chelscelis commited on
Commit
7877864
·
1 Parent(s): 6cf198b

Upload 17 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ wiki-news-300d-1M-subword.vec filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+
4
+ from utils import *
5
+
6
+ backgroundPattern = """
7
+ <style>
8
+ [data-testid="stAppViewContainer"] {
9
+ background-color: #0E1117;
10
+ opacity: 1;
11
+ background-image: radial-gradient(#282C34 0.75px, #0E1117 0.75px);
12
+ background-size: 15px 15px;
13
+ }
14
+ </style>
15
+ """
16
+
17
+ # backgroundPattern = """
18
+ # <style>
19
+ # [data-testid="stAppViewContainer"] {
20
+ # background-color: #FFFFFF;
21
+ # opacity: 1;
22
+ # background-image: radial-gradient(#D1D1D1 0.75px, #FFFFFF 0.75px);
23
+ # background-size: 15px 15px;
24
+ # }
25
+ # </style>
26
+ # """
27
+
28
+ st.markdown(backgroundPattern, unsafe_allow_html=True)
29
+
30
+ st.write("""
31
+ # Resume Screening & Classification
32
+ """)
33
+ st.caption("""
34
+ Using K-Nearest Neighbors (KNN) algorithm and Cosine Similarity
35
+ ######
36
+ """)
37
+
38
+ tab1, tab2, tab3 = st.tabs(['Getting Started', 'Classify', 'Rank'])
39
+
40
+ with tab1:
41
+ writeGettingStarted()
42
+
43
+ with tab2:
44
+ st.header('Input')
45
+ uploadedResumeClf = st.file_uploader('Upload Resumes', type = 'xlsx', key = 'upload-resume-clf')
46
+
47
+ if uploadedResumeClf is not None:
48
+ isButtonDisabledClf = False
49
+ else:
50
+ st.session_state.processClf = False
51
+ isButtonDisabledClf = True
52
+
53
+ if 'processClf' not in st.session_state:
54
+ st.session_state.processClf = False
55
+
56
+ st.button('Start Processing', on_click = clickClassify, disabled = isButtonDisabledClf, key = 'process-clf')
57
+
58
+ if st.session_state.processClf:
59
+ st.divider()
60
+ st.header('Output')
61
+ resumeClf = pd.read_excel(uploadedResumeClf)
62
+ resumeClf = classifyResumes(resumeClf)
63
+ with st.expander('View Bar Chart'):
64
+ barChart = createBarChart(resumeClf)
65
+ st.altair_chart(barChart, use_container_width = True)
66
+ currentClf = filterDataframeClf(resumeClf)
67
+ st.dataframe(currentClf, use_container_width = True, hide_index = True)
68
+ xlsxClf = convertDfToXlsx(currentClf)
69
+ st.download_button(label='Save Current Output as XLSX', data = xlsxClf, file_name = 'Resumes_categorized.xlsx')
70
+
71
+ with tab3:
72
+ st.header('Input')
73
+ uploadedJobDescriptionRnk = st.file_uploader('Upload Job Description', type = 'txt', key = 'upload-jd-rnk')
74
+ uploadedResumeRnk = st.file_uploader('Upload Resumes', type = 'xlsx', key = 'upload-resume-rnk')
75
+
76
+ if all([uploadedJobDescriptionRnk, uploadedResumeRnk]):
77
+ isButtonDisabledRnk = False
78
+ else:
79
+ st.session_state.processRank = False
80
+ isButtonDisabledRnk = True
81
+
82
+ if 'processRank' not in st.session_state:
83
+ st.session_state.processRank = False
84
+
85
+ st.button('Start Processing', on_click = clickRank, disabled = isButtonDisabledRnk, key = 'process-rnk')
86
+
87
+ if st.session_state.processRank:
88
+ st.divider()
89
+ st.header('Output')
90
+ jobDescriptionRnk = uploadedJobDescriptionRnk.read().decode('utf-8')
91
+ resumeRnk = pd.read_excel(uploadedResumeRnk)
92
+ resumeRnk = rankResumes(jobDescriptionRnk, resumeRnk)
93
+ with st.expander('View Job Description'):
94
+ st.write(jobDescriptionRnk)
95
+ currentRnk = filterDataframeRnk(resumeRnk)
96
+ st.dataframe(currentRnk, use_container_width = True, hide_index = True)
97
+ xlsxRnk = convertDfToXlsx(currentRnk)
98
+ st.download_button(label='Save Current Output as XLSX', data = xlsxRnk, file_name = 'Resumes_ranked.xlsx')
99
+
clf-1.png ADDED
clf-2.png ADDED
clf-3.png ADDED
clf-4.png ADDED
knn_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d9b5be2223b9acb49fe7cf16a6df47daa312ed35b21e2a9341b9ae97575c60
3
+ size 4223478
label_encoder.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ed5884fd4a68001090ffe82fda74566574d5b9aed8654eec48c19cc4585f1b
3
+ size 715
nca_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd5ab8d8adb40ead5421e8d90e36c99004f2af426be6659e7add2f0c58893e7
3
+ size 43294492
requirements.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ altair==5.1.1
2
+ attrs==23.1.0
3
+ blinker==1.6.2
4
+ cachetools==5.3.1
5
+ certifi==2023.7.22
6
+ charset-normalizer==3.2.0
7
+ click==8.1.7
8
+ contourpy==1.1.1
9
+ cycler==0.11.0
10
+ et-xmlfile==1.1.0
11
+ fonttools==4.42.1
12
+ gensim==4.3.2
13
+ gitdb==4.0.10
14
+ GitPython==3.1.37
15
+ idna==3.4
16
+ importlib-metadata==6.8.0
17
+ Jinja2==3.1.2
18
+ joblib==1.3.2
19
+ jsonschema==4.19.1
20
+ jsonschema-specifications==2023.7.1
21
+ kiwisolver==1.4.5
22
+ markdown-it-py==3.0.0
23
+ MarkupSafe==2.1.3
24
+ matplotlib==3.8.0
25
+ mdurl==0.1.2
26
+ nltk==3.8.1
27
+ numpy==1.26.0
28
+ openpyxl==3.1.2
29
+ packaging==23.1
30
+ pandas==2.1.1
31
+ Pillow==9.5.0
32
+ protobuf==4.24.3
33
+ pyarrow==13.0.0
34
+ pydeck==0.8.1b0
35
+ Pygments==2.16.1
36
+ pyparsing==3.1.1
37
+ PyQt5==5.15.9
38
+ PyQt5-Qt5==5.15.2
39
+ PyQt5-sip==12.12.2
40
+ python-dateutil==2.8.2
41
+ pytz==2023.3.post1
42
+ referencing==0.30.2
43
+ regex==2023.8.8
44
+ requests==2.31.0
45
+ rich==13.5.3
46
+ rpds-py==0.10.3
47
+ scikit-learn==1.3.1
48
+ scipy==1.11.2
49
+ seaborn==0.12.2
50
+ six==1.16.0
51
+ smart-open==6.4.0
52
+ smmap==5.0.1
53
+ streamlit==1.27.0
54
+ tenacity==8.2.3
55
+ threadpoolctl==3.2.0
56
+ toml==0.10.2
57
+ toolz==0.12.0
58
+ tornado==6.3.3
59
+ tqdm==4.66.1
60
+ typing_extensions==4.8.0
61
+ tzdata==2023.3
62
+ tzlocal==5.0.1
63
+ urllib3==2.0.5
64
+ validators==0.22.0
65
+ watchdog==3.0.0
66
+ XlsxWriter==3.1.4
67
+ zipp==3.17.0
rnk-1.png ADDED
rnk-2.png ADDED
rnk-3.png ADDED
rnk-4.png ADDED
tfidf_vectorizer.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:986d302aa10cddb969608ad2afe08fade436d19afd812ba508a0c8b4f1498a2b
3
+ size 794455
train_classifier.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import matplotlib.pyplot as plt
3
+ import pandas as pd
4
+ import re
5
+ import seaborn as sns
6
+ from nltk.corpus import stopwords
7
+ from nltk.stem import PorterStemmer
8
+ from sklearn import metrics
9
+ from sklearn.feature_extraction.text import TfidfVectorizer
10
+ from sklearn.model_selection import train_test_split, GridSearchCV
11
+ from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis
12
+ from sklearn.preprocessing import LabelEncoder
13
+
14
+ file_path = '~/Projects/hau/csstudy/resume-screening-and-classification/knn-trial/datasets/dataset_hr_edited.csv'
15
+
16
+ resumeDataSet = pd.read_csv(file_path)
17
+
18
+ stop_words = set(stopwords.words('english'))
19
+ stemmer = PorterStemmer()
20
+
21
+ print (resumeDataSet['Category'].value_counts())
22
+
23
+ def cleanResume(resumeText):
24
+ resumeText = re.sub('http\S+\s*', ' ', resumeText) # remove URLs
25
+ resumeText = re.sub('RT|cc', ' ', resumeText) # remove RT and cc
26
+ resumeText = re.sub('#\S+', '', resumeText) # remove hashtags
27
+ resumeText = re.sub('@\S+', ' ', resumeText) # remove mentions
28
+ resumeText = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', resumeText) # remove punctuations
29
+ resumeText = re.sub(r'[^\x00-\x7f]',r' ', resumeText)
30
+ resumeText = re.sub('\s+', ' ', resumeText) # remove extra whitespace
31
+
32
+ words = resumeText.split()
33
+ words = [word for word in words if word.lower() not in stop_words]
34
+ words = [stemmer.stem(word.lower()) for word in words if word.lower() not in stop_words]
35
+ resumeText = ' '.join(words)
36
+ return resumeText
37
+
38
+ resumeDataSet['cleaned_resume'] = resumeDataSet.Resume.apply(lambda x: cleanResume(x))
39
+
40
+ le = LabelEncoder()
41
+ resumeDataSet['Category'] = le.fit_transform(resumeDataSet['Category'])
42
+ le_filename = f'label_encoder.joblib'
43
+ joblib.dump(le, le_filename)
44
+
45
+ requiredText = resumeDataSet['cleaned_resume'].values
46
+ requiredTarget = resumeDataSet['Category'].values
47
+
48
+ word_vectorizer = TfidfVectorizer(
49
+ stop_words='english',
50
+ sublinear_tf=True,
51
+ max_features=18038
52
+ )
53
+
54
+ word_vectorizer.fit(requiredText)
55
+ joblib.dump(word_vectorizer, 'tfidf_vectorizer.joblib')
56
+ WordFeatures = word_vectorizer.transform(requiredText)
57
+
58
+ nca = NeighborhoodComponentsAnalysis(n_components=300, random_state=42)
59
+ WordFeatures = nca.fit_transform(WordFeatures.toarray(), requiredTarget)
60
+ nca_filename = f'nca_model.joblib'
61
+ joblib.dump(nca, nca_filename)
62
+
63
+ X_train,X_test,y_train,y_test = train_test_split(WordFeatures,requiredTarget,random_state=42, test_size=0.2,shuffle=True, stratify=requiredTarget)
64
+ print(X_train.shape)
65
+ print(X_test.shape)
66
+
67
+ # n_neighbors_values = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99]
68
+ # weights = ["uniform", "distance"]
69
+ # metric = ["euclidean", "manhattan", "minkowski", "cosine"]
70
+ # algorithm = ['ball_tree', 'kd_tree', 'brute', 'auto']
71
+ # param_grid = dict(n_neighbors=n_neighbors_values, weights=weights, metric=metric, algorithm=algorithm)
72
+ # knn = KNeighborsClassifier()
73
+ # gs = GridSearchCV(estimator=knn, param_grid=param_grid, scoring="accuracy", verbose=1, cv=10, n_jobs=3)
74
+ # grid_search = gs.fit(X_train, y_train)
75
+ # best_score = grid_search.best_score_
76
+ # best_parameters = grid_search.best_params_
77
+ # print("Best Score:", best_score)
78
+ # print("Best Parameters:", best_parameters)
79
+
80
+ knn = KNeighborsClassifier(n_neighbors=1,
81
+ metric='manhattan',
82
+ weights='uniform',
83
+ algorithm='ball_tree',
84
+ )
85
+ knn.fit(X_train, y_train)
86
+
87
+ knnModel_filename = f'knn_model.joblib'
88
+ joblib.dump(knn, knnModel_filename)
89
+
90
+ prediction = knn.predict(X_test)
91
+ print('Accuracy of KNeighbors Classifier on training set: {:.2f}'.format(knn.score(X_train, y_train)))
92
+ print('Accuracy of KNeighbors Classifier on test set: {:.2f}'.format(knn.score(X_test, y_test)))
93
+ print("\n Classification report for classifier %s:\n%s\n" % (knn, metrics.classification_report(y_test, prediction)))
94
+
95
+ confusion_matrix = metrics.confusion_matrix(y_test, prediction)
96
+
97
+ plt.figure(figsize=(10, 10))
98
+ sns.heatmap(confusion_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=le.classes_, yticklabels=le.classes_)
99
+ plt.xlabel('Predicted')
100
+ plt.ylabel('True')
101
+ plt.title('Confusion Matrix')
102
+ plt.show()
utils.py ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import altair as alt
2
+ # import datetime
3
+ import joblib
4
+ import nltk
5
+ import numpy as np
6
+ import pandas as pd
7
+ import re
8
+ import streamlit as st
9
+ import time
10
+
11
+ from gensim.corpora import Dictionary
12
+ from gensim.models import KeyedVectors, TfidfModel
13
+ from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix, WordEmbeddingSimilarityIndex
14
+ from io import BytesIO
15
+ from nltk import pos_tag, word_tokenize
16
+ from nltk.corpus import stopwords, wordnet
17
+ from nltk.stem import PorterStemmer, WordNetLemmatizer
18
+ from pandas.api.types import is_categorical_dtype, is_numeric_dtype
19
+ from PIL import Image
20
+ from scipy.sparse import csr_matrix, hstack
21
+
22
+ nltk.download('averaged_perceptron_tagger')
23
+ nltk.download('punkt')
24
+ nltk.download('stopwords')
25
+
26
+ stop_words = set(stopwords.words('english'))
27
+ lemmatizer = WordNetLemmatizer()
28
+ stemmer = PorterStemmer()
29
+
30
+ def addZeroFeatures(matrix):
31
+ maxFeatures = 18038
32
+ numDocs, numTerms = matrix.shape
33
+ missingFeatures = maxFeatures - numTerms
34
+ if missingFeatures > 0:
35
+ zeroFeatures = csr_matrix((numDocs, missingFeatures), dtype=np.float64)
36
+ matrix = hstack([matrix, zeroFeatures])
37
+ return matrix
38
+
39
+ @st.cache_data(max_entries = 1, show_spinner = False)
40
+ def classifyResumes(df):
41
+ # WITH PROGRESS BAR
42
+ progressBar = st.progress(0)
43
+ progressBar.progress(0, text = "Preprocessing data ...")
44
+ startTime = time.time()
45
+ df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
46
+ resumeText = df['cleanedResume'].values
47
+ progressBar.progress(20, text = "Extracting features ...")
48
+ vectorizer = loadTfidfVectorizer()
49
+ wordFeatures = vectorizer.transform(resumeText)
50
+ wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
51
+ progressBar.progress(40, text = "Reducing dimensionality ...")
52
+ finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
53
+ progressBar.progress(60, text = "Predicting categories ...")
54
+ knn = loadKnnModel()
55
+ predictedCategories = knn.predict(finalFeatures)
56
+ progressBar.progress(80, text = "Finishing touches ...")
57
+ le = loadLabelEncoder()
58
+ df['Industry Category'] = le.inverse_transform(predictedCategories)
59
+ df['Industry Category'] = pd.Categorical(df['Industry Category'])
60
+ df.drop(columns = ['cleanedResume'], inplace = True)
61
+ endTime = time.time()
62
+ elapsedSeconds = endTime - startTime
63
+ hours, remainder = divmod(int(elapsedSeconds), 3600)
64
+ minutes, _ = divmod(remainder, 60)
65
+ secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
66
+ elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
67
+ progressBar.progress(100, text = f'Classification Complete!')
68
+ time.sleep(1)
69
+ progressBar.empty()
70
+ st.info(f'Finished classifying {len(resumeText)} resumes - {elapsedTimeStr}')
71
+ return df
72
+
73
+ # NO LOADING WIDGET
74
+ # startTime = time.time()
75
+ # df['cleanedResume'] = df.Resume.apply(lambda x: performStemming(x))
76
+ # resumeText = df['cleanedResume'].values
77
+ # vectorizer = loadTfidfVectorizer()
78
+ # wordFeatures = vectorizer.transform(resumeText)
79
+ # wordFeaturesWithZeros = addZeroFeatures(wordFeatures)
80
+ # finalFeatures = dimensionalityReduction(wordFeaturesWithZeros)
81
+ # knn = loadKnnModel()
82
+ # predictedCategories = knn.predict(finalFeatures)
83
+ # le = loadLabelEncoder()
84
+ # df['Industry Category'] = le.inverse_transform(predictedCategories)
85
+ # df['Industry Category'] = pd.Categorical(df['Industry Category'])
86
+ # df.drop(columns = ['cleanedResume'], inplace = True)
87
+ # endTime = time.time()
88
+ # elapsedSeconds = endTime - startTime
89
+ # elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
90
+ # hours, remainder = divmod(elapsedTime.seconds, 3600)
91
+ # minutes, seconds = divmod(remainder, 60)
92
+ # elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
93
+ # st.info(f'Finished in {elapsedTimeStr}')
94
+ # return df
95
+
96
+ def clickClassify():
97
+ st.session_state.processClf = True
98
+
99
+ def clickRank():
100
+ st.session_state.processRank = True
101
+
102
+ def convertDfToXlsx(df):
103
+ output = BytesIO()
104
+ writer = pd.ExcelWriter(output, engine = 'xlsxwriter')
105
+ df.to_excel(writer, index = False, sheet_name = 'Sheet1')
106
+ workbook = writer.book
107
+ worksheet = writer.sheets['Sheet1']
108
+ format1 = workbook.add_format({'num_format': '0.00'})
109
+ worksheet.set_column('A:A', None, format1)
110
+ writer.close()
111
+ processedData = output.getvalue()
112
+ return processedData
113
+
114
+ def createBarChart(df):
115
+ valueCounts = df['Industry Category'].value_counts().reset_index()
116
+ valueCounts.columns = ['Industry Category', 'Count']
117
+ newDataframe = pd.DataFrame(valueCounts)
118
+ barChart = alt.Chart(newDataframe,
119
+ ).mark_bar(
120
+ color = '#56B6C2',
121
+ size = 13
122
+ ).encode(
123
+ x = alt.X('Count:Q', axis = alt.Axis(format = 'd'), title = 'Number of Resumes'),
124
+ y = alt.Y('Industry Category:N', title = 'Category'),
125
+ tooltip = ['Industry Category', 'Count']
126
+ ).properties(
127
+ title = 'Number of Resumes per Category',
128
+ )
129
+ return barChart
130
+
131
+ def dimensionalityReduction(features):
132
+ nca = joblib.load('nca_model.joblib')
133
+ features = nca.transform(features.toarray())
134
+ return features
135
+
136
+ def filterDataframeClf(df: pd.DataFrame) -> pd.DataFrame:
137
+ modify = st.toggle("Add filters", key = 'filter-clf-1')
138
+ if not modify:
139
+ return df
140
+ df = df.copy()
141
+ modificationContainer = st.container()
142
+ with modificationContainer:
143
+ toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-clf-2')
144
+ for column in toFilterColumns:
145
+ left, right = st.columns((1, 20))
146
+ left.write("↳")
147
+ widgetKey = f'filter-clf-{toFilterColumns.index(column)}-{column}'
148
+ if is_categorical_dtype(df[column]):
149
+ userCatInput = right.multiselect(
150
+ f'Values for {column}',
151
+ df[column].unique(),
152
+ default = list(df[column].unique()),
153
+ key = widgetKey
154
+ )
155
+ df = df[df[column].isin(userCatInput)]
156
+ elif is_numeric_dtype(df[column]):
157
+ _min = float(df[column].min())
158
+ _max = float(df[column].max())
159
+ step = (_max - _min) / 100
160
+ userNumInput = right.slider(
161
+ f'Values for {column}',
162
+ min_value = _min,
163
+ max_value = _max,
164
+ value = (_min, _max),
165
+ step = step,
166
+ key = widgetKey
167
+ )
168
+ df = df[df[column].between(*userNumInput)]
169
+ else:
170
+ userTextInput = right.text_input(
171
+ f'Substring or regex in {column}',
172
+ key = widgetKey
173
+ )
174
+ if userTextInput:
175
+ userTextInput = userTextInput.lower()
176
+ df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
177
+ return df
178
+
179
+ def filterDataframeRnk(df: pd.DataFrame) -> pd.DataFrame:
180
+ modify = st.toggle("Add filters", key = 'filter-rnk-1')
181
+ if not modify:
182
+ return df
183
+ df = df.copy()
184
+ modificationContainer = st.container()
185
+ with modificationContainer:
186
+ toFilterColumns = st.multiselect("Filter table on", df.columns, key = 'filter-rnk-2')
187
+ for column in toFilterColumns:
188
+ left, right = st.columns((1, 20))
189
+ left.write("↳")
190
+ widgetKey = f'filter-rnk-{toFilterColumns.index(column)}-{column}'
191
+ if is_categorical_dtype(df[column]):
192
+ userCatInput = right.multiselect(
193
+ f'Values for {column}',
194
+ df[column].unique(),
195
+ default = list(df[column].unique()),
196
+ key = widgetKey
197
+ )
198
+ df = df[df[column].isin(userCatInput)]
199
+ elif is_numeric_dtype(df[column]):
200
+ _min = float(df[column].min())
201
+ _max = float(df[column].max())
202
+ step = (_max - _min) / 100
203
+ userNumInput = right.slider(
204
+ f'Values for {column}',
205
+ min_value = _min,
206
+ max_value = _max,
207
+ value = (_min, _max),
208
+ step = step,
209
+ key = widgetKey
210
+ )
211
+ df = df[df[column].between(*userNumInput)]
212
+ else:
213
+ userTextInput = right.text_input(
214
+ f'Substring or regex in {column}',
215
+ key = widgetKey
216
+ )
217
+ if userTextInput:
218
+ userTextInput = userTextInput.lower()
219
+ df = df[df[column].astype(str).str.lower().str.contains(userTextInput)]
220
+ return df
221
+
222
+ def getWordnetPos(tag):
223
+ if tag.startswith('J'):
224
+ return wordnet.ADJ
225
+ elif tag.startswith('V'):
226
+ return wordnet.VERB
227
+ elif tag.startswith('N'):
228
+ return wordnet.NOUN
229
+ elif tag.startswith('R'):
230
+ return wordnet.ADV
231
+ else:
232
+ return wordnet.NOUN
233
+
234
+ def loadKnnModel():
235
+ knnModelFileName = f'knn_model.joblib'
236
+ return joblib.load(knnModelFileName)
237
+
238
+ def loadLabelEncoder():
239
+ labelEncoderFileName = f'label_encoder.joblib'
240
+ return joblib.load(labelEncoderFileName)
241
+
242
+ def loadTfidfVectorizer():
243
+ tfidfVectorizerFileName = f'tfidf_vectorizer.joblib'
244
+ return joblib.load(tfidfVectorizerFileName)
245
+
246
+ def performLemmatization(text):
247
+ text = re.sub('http\S+\s*', ' ', text)
248
+ text = re.sub('RT|cc', ' ', text)
249
+ text = re.sub('#\S+', '', text)
250
+ text = re.sub('@\S+', ' ', text)
251
+ text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
252
+ text = re.sub(r'[^\x00-\x7f]',r' ', text)
253
+ text = re.sub('\s+', ' ', text)
254
+ words = word_tokenize(text)
255
+ words = [
256
+ lemmatizer.lemmatize(word.lower(), pos = getWordnetPos(pos))
257
+ for word, pos in pos_tag(words) if word.lower() not in stop_words
258
+ ]
259
+ return words
260
+
261
+ def performStemming(text):
262
+ text = re.sub('http\S+\s*', ' ', text)
263
+ text = re.sub('RT|cc', ' ', text)
264
+ text = re.sub('#\S+', '', text)
265
+ text = re.sub('@\S+', ' ', text)
266
+ text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text)
267
+ text = re.sub(r'[^\x00-\x7f]',r' ', text)
268
+ text = re.sub('\s+', ' ', text)
269
+ words = word_tokenize(text)
270
+ words = [stemmer.stem(word.lower()) for word in words if word.lower() not in stop_words]
271
+ text = ' '.join(words)
272
+ return text
273
+
274
+ @st.cache_data
275
+ def loadModel():
276
+ # model_path = '~/Projects/hau/csstudy/final-csstudy/wiki-news-300d-1M-subword.vec'
277
+ model_path = 'wiki-news-300d-1M-subword.vec'
278
+ model = KeyedVectors.load_word2vec_format(model_path, limit = 100000)
279
+ return model
280
+
281
+ model = loadModel()
282
+
283
+ @st.cache_data(max_entries = 1, show_spinner = False)
284
+ def rankResumes(text, df):
285
+ # WITH PROGRESS BAR
286
+ progressBar = st.progress(0)
287
+ progressBar.progress(0, text = "Preprocessing data ...")
288
+ startTime = time.time()
289
+ jobDescriptionText = performLemmatization(text)
290
+ df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
291
+ documents = [jobDescriptionText] + df['cleanedResume'].tolist()
292
+ progressBar.progress(13, text = "Creating a dictionary ...")
293
+ dictionary = Dictionary(documents)
294
+ progressBar.progress(25, text = "Creating a TF-IDF model ...")
295
+ tfidf = TfidfModel(dictionary = dictionary)
296
+ progressBar.progress(38, text = "Creating a Similarity Index...")
297
+ similarityIndex = WordEmbeddingSimilarityIndex(model)
298
+ progressBar.progress(50, text = "Creating a Similarity Matrix...")
299
+ similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
300
+ progressBar.progress(63, text = "Setting up job description as the query ...")
301
+ query = tfidf[dictionary.doc2bow(jobDescriptionText)]
302
+ progressBar.progress(75, text = "Calculating semantic similarities ...")
303
+ index = SoftCosineSimilarity(
304
+ tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
305
+ similarityMatrix
306
+ )
307
+ similarities = index[query]
308
+ progressBar.progress(88, text = "Finishing touches ...")
309
+ df['Similarity Score'] = similarities
310
+ df['Rank'] = df['Similarity Score'].rank(ascending=False, method='dense').astype(int)
311
+ df.sort_values(by='Rank', inplace=True)
312
+ df.drop(columns = ['cleanedResume'], inplace = True)
313
+ endTime = time.time()
314
+ elapsedSeconds = endTime - startTime
315
+ hours, remainder = divmod(int(elapsedSeconds), 3600)
316
+ minutes, _ = divmod(remainder, 60)
317
+ secondsWithDecimals = '{:.2f}'.format(elapsedSeconds % 60)
318
+ elapsedTimeStr = f'{hours} h : {minutes} m : {secondsWithDecimals} s'
319
+ progressBar.progress(100, text = f'Classification Complete!')
320
+ time.sleep(1)
321
+ progressBar.empty()
322
+ st.info(f'Finished ranking {len(df)} resumes - {elapsedTimeStr}')
323
+ return df
324
+
325
+ # NO LOADING WIDGET
326
+ # startTime = time.time()
327
+ # jobDescriptionText = performLemmatization(text)
328
+ # df['cleanedResume'] = df['Resume'].apply(lambda x: performLemmatization(x))
329
+ # documents = [jobDescriptionText] + df['cleanedResume'].tolist()
330
+ # dictionary = Dictionary(documents)
331
+ # tfidf = TfidfModel(dictionary = dictionary)
332
+ # similarityIndex = WordEmbeddingSimilarityIndex(model)
333
+ # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
334
+ # query = tfidf[dictionary.doc2bow(jobDescriptionText)]
335
+ # index = SoftCosineSimilarity(
336
+ # tfidf[[dictionary.doc2bow(resume) for resume in df['cleanedResume']]],
337
+ # similarityMatrix
338
+ # )
339
+ # similarities = index[query]
340
+ # df['Similarity Score'] = similarities
341
+ # df.sort_values(by = 'Similarity Score', ascending = False, inplace = True)
342
+ # df.drop(columns = ['cleanedResume'], inplace = True)
343
+ # endTime = time.time()
344
+ # elapsedSeconds = endTime - startTime
345
+ # elapsedTime = datetime.timedelta(seconds = elapsedSeconds)
346
+ # hours, remainder = divmod(elapsedTime.seconds, 3600)
347
+ # minutes, seconds = divmod(remainder, 60)
348
+ # elapsedTimeStr = f"{hours} hr {minutes} min {seconds} sec"
349
+ # st.info(f'Finished in {elapsedTimeStr}')
350
+ # return df
351
+
352
+ # TF-IDF + LSA + COSSIM
353
+ # from sklearn.decomposition import TruncatedSVD
354
+ # import math
355
+ # def resumesRank(jobDescriptionRnk, resumeRnk):
356
+ # jobDescriptionRnk = preprocessing(jobDescriptionRnk)
357
+ # resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing(x))
358
+ # resumes = resumeRnk['cleanedResume'].values
359
+ # # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words = 'english')
360
+ # # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True)
361
+ # # tfidfVectorizer = TfidfVectorizer(stop_words = 'english')
362
+ # tfidfVectorizer = TfidfVectorizer()
363
+ # tfidfMatrix = tfidfVectorizer.fit_transform([jobDescriptionRnk] + list(resumes))
364
+ # num_features = len(tfidfVectorizer.get_feature_names_out())
365
+ # st.write(f"Number of TF-IDF Features: {num_features}")
366
+ # nComponents = math.ceil(len(resumes) * 0.55)
367
+ # # nComponents = math.ceil(num_features * 0.01)
368
+ # # nComponents = 5
369
+ # st.write(nComponents)
370
+ # # nComponents = len(resumes)
371
+ # lsa = TruncatedSVD(n_components=nComponents)
372
+ # lsaMatrix = lsa.fit_transform(tfidfMatrix)
373
+ # similarityScores = cosine_similarity(lsaMatrix[0:1], lsaMatrix[1:])
374
+ # resumeRnk['Similarity Score (%)'] = similarityScores[0] * 100
375
+ # resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
376
+ # del resumeRnk['cleanedResume']
377
+ # return resumeRnk
378
+
379
+ # 1 BY 1 SOFT COSSIM
380
+ # def resumesRank(jobDescriptionRnk, resumeRnk):
381
+ # jobDescriptionText = preprocessing2(jobDescriptionRnk)
382
+ # resumeRnk['cleanedResume'] = resumeRnk['Resume'].apply(lambda x: preprocessing2(x))
383
+ # similarityscore = []
384
+ # for resume in resumeRnk['cleanedResume']:
385
+ # documents = [jobDescriptionText, resume]
386
+ # dictionary = Dictionary(documents)
387
+ # documentBow = [dictionary.doc2bow(doc) for doc in documents]
388
+ # tfidf = TfidfModel(documentBow, dictionary=dictionary)
389
+ # similarityIndex = WordEmbeddingSimilarityIndex(model)
390
+ # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary, tfidf)
391
+ # # similarityMatrix = SparseTermSimilarityMatrix(similarityIndex, dictionary)
392
+ # value = tfidf[dictionary.doc2bow(resume)]
393
+ # # value = dictionary.doc2bow(jobDescriptionText)
394
+ # index = SoftCosineSimilarity(
395
+ # # tfidf[[dictionary.doc2bow(resume)]],
396
+ # tfidf[[dictionary.doc2bow(jobDescriptionText)]],
397
+ # # [dictionary.doc2bow(resume) for resume in resumeRnk['cleanedResume']],
398
+ # similarityMatrix,
399
+ # )
400
+ # similarities = index[value]
401
+ # similarityscore.append(similarities)
402
+ # print(similarityscore)
403
+ # resumeRnk['Similarity Score'] = similarityscore
404
+ # resumeRnk.sort_values(by='Similarity Score', ascending=False, inplace=True)
405
+ # resumeRnk.drop(columns=['cleanedResume'], inplace=True)
406
+ # return resumeRnk
407
+ #
408
+ # TF-IDF SCORE + WORD EMBEDDINGS SCORE
409
+ # def resumesRank(jobDescriptionRnk, resumeRnk):
410
+ # def get_word_embedding(text):
411
+ # words = text.split()
412
+ # valid_words = [word for word in text.split() if word in model]
413
+ # if valid_words:
414
+ # return np.mean([model[word] for word in valid_words], axis=0)
415
+ # else:
416
+ # return np.zeros(model.vector_size)
417
+ # jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
418
+ # resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
419
+ # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
420
+ # jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
421
+ # jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
422
+ # resumeSimilarities = []
423
+ # for resumeContent in resumeRnk['cleanedResume']:
424
+ # resumeEmbedding = get_word_embedding(resumeContent)
425
+ # similarityFastText = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
426
+ # similarityTFIDF = cosine_similarity(jobTfidf, tfidfVectorizer.transform([resumeContent]))[0][0]
427
+ # similarity = (0.6 * similarityTFIDF) + (0.4 * similarityFastText)
428
+ # final_similarity = similarity * 100
429
+ # resumeSimilarities.append(final_similarity)
430
+ # resumeRnk['Similarity Score (%)'] = resumeSimilarities
431
+ # resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
432
+ # del resumeRnk['cleanedResume']
433
+ # return resumeRnk
434
+
435
+ # WORD EMBEDDINGS + COSSIM
436
+ # def resumesRank(jobDescriptionRnk, resumeRnk):
437
+ # def get_word_embedding(text):
438
+ # words = text.split()
439
+ # valid_words = [word for word in text.split() if word in model]
440
+ # if valid_words:
441
+ # return np.mean([model[word] for word in valid_words], axis=0)
442
+ # else:
443
+ # return np.zeros(model.vector_size)
444
+ # jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
445
+ # jobDescriptionEmbedding = get_word_embedding(jobDescriptionRnk)
446
+ # resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
447
+ # resumeSimilarities = []
448
+ # for resumeContent in resumeRnk['cleanedResume']:
449
+ # resumeEmbedding = get_word_embedding(resumeContent)
450
+ # similarity = cosine_similarity([jobDescriptionEmbedding], [resumeEmbedding])[0][0]
451
+ # percentageSimilarity = similarity * 100
452
+ # resumeSimilarities.append(percentageSimilarity)
453
+ # resumeRnk['Similarity Score (%)'] = resumeSimilarities
454
+ # resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
455
+ # del resumeRnk['cleanedResume']
456
+ # return resumeRnk
457
+
458
+ # TF-IDF + COSSIM
459
+ # def resumesRank(jobDescriptionRnk, resumeRnk):
460
+ # jobDescriptionRnk = preprocessing2(jobDescriptionRnk)
461
+ # resumeRnk['cleanedResume'] = resumeRnk.Resume.apply(lambda x: preprocessing2(x))
462
+ # tfidfVectorizer = TfidfVectorizer(sublinear_tf = True, stop_words='english')
463
+ # jobTfidf = tfidfVectorizer.fit_transform([jobDescriptionRnk])
464
+ # resumeSimilarities = []
465
+ # for resumeContent in resumeRnk['cleanedResume']:
466
+ # resumeTfidf = tfidfVectorizer.transform([resumeContent])
467
+ # similarity = cosine_similarity(jobTfidf, resumeTfidf)
468
+ # percentageSimilarity = (similarity[0][0] * 100)
469
+ # resumeSimilarities.append(percentageSimilarity)
470
+ # resumeRnk['Similarity Score (%)'] = resumeSimilarities
471
+ # resumeRnk = resumeRnk.sort_values(by='Similarity Score (%)', ascending=False)
472
+ # del resumeRnk['cleanedResume']
473
+ # return resumeRnk
474
+
475
+ def writeGettingStarted():
476
+ st.write("""
477
+ ## Hello, Welcome!
478
+ In today's competitive job market, the process of manually screening resumes has become a daunting task for recruiters and hiring managers.
479
+ The sheer volume of applications received for a single job posting can make it extremely time-consuming to identify the most suitable candidates efficiently.
480
+ This often leads to missed opportunities and the potential loss of top-tier talent.
481
+
482
+ The ***Resume Screening & Classification*** website application aims to help alleviate the challenges posed by manual resume screening.
483
+ The main objectives are:
484
+ - To classify the resumes into their most suitable job industry category
485
+ - To compare the resumes to the job description and rank them by similarity
486
+ """)
487
+ st.divider()
488
+ st.write("""
489
+ ## Input Guide
490
+ #### For the Job Description:
491
+ Ensure the job description is saved in a text (.txt) file.
492
+ Kindly outline the responsibilities, qualifications, and skills associated with the position.
493
+
494
+ #### For the Resumes:
495
+ Resumes must be compiled in an excel (.xlsx) file.
496
+ The organization of columns is up to you but ensure that the "Resume" column is present.
497
+ The values under this column should include all the relevant details for each resume.
498
+ """)
499
+ st.divider()
500
+ st.write("""
501
+ ## Demo Walkthrough
502
+ #### Classify Tab:
503
+ The web app will classify the resumes into their most suitable job industry category.
504
+ Currently the Category Scope consists of the following:
505
+ """)
506
+ column1, column2 = st.columns(2)
507
+ with column1:
508
+ st.write("""
509
+ - Aviation
510
+ - Business development
511
+ - Culinary
512
+ - Education
513
+ - Engineering
514
+ - Finance
515
+ """)
516
+ with column2:
517
+ st.write("""
518
+ - Fitness
519
+ - Healthcare
520
+ - HR
521
+ - Information Technology
522
+ - Public relations
523
+ """)
524
+ with st.expander('Classification Steps'):
525
+ st.write("""
526
+ ##### Upload Resumes & Start Processing:
527
+ - Navigate to the "Classify" tab.
528
+ - Click the "Upload Resumes" button.
529
+ - Select the Excel file (.xlsx) containing the resumes you want to classify. Ensure that your Excel file has the "Resume" column with the resume text and any necessary columns for filtering or additional information.
530
+ - Click the "Start Processing" button.
531
+ - The app will analyze the resumes and categorize them into job industry categories.
532
+ ######
533
+ """)
534
+ imgClf1 = Image.open('clf-1.png')
535
+ st.image(imgClf1, use_column_width = True, output_format = "PNG")
536
+ st.write("""
537
+ ##### View Bar Chart:
538
+ - A bar chart will appear, showing the number of resumes per category, helping you visualize the distribution.
539
+ ######
540
+ """)
541
+ imgClf2 = Image.open('clf-2.png')
542
+ st.image(imgClf2, use_column_width = True, output_format = "PNG")
543
+ st.write("""
544
+ ##### Add Filters:
545
+ - You can apply filters to the dataframe to narrow down your results.
546
+ ######
547
+ """)
548
+ imgClf3 = Image.open('clf-3.png')
549
+ st.image(imgClf3, use_column_width = True, output_format = "PNG")
550
+ st.write("""
551
+ ##### Donwload Results:
552
+ - Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
553
+ ####
554
+ """)
555
+ imgClf4 = Image.open('clf-4.png')
556
+ st.image(imgClf4, use_column_width = True, output_format = "PNG")
557
+ st.write("""
558
+ #### Rank Tab:
559
+ The web app will rank the resumes based on their semantic similarity to the job description.
560
+ The similarity score ranges from -1 to 1.
561
+ A score of 1 is achieved when Document A and Document B are identical.
562
+
563
+ ##### **Kindly take note:**
564
+
565
+ It's important to note that these scores are not absolute and may change when more resumes are added in the comparison.
566
+ The ranking algorithm dynamically adjusts its results based on the entire set of uploaded resumes.
567
+ We recommend considering the scores as a relative measure rather than an absolute determination.
568
+ """)
569
+ with st.expander('Ranking Steps'):
570
+ st.write("""
571
+ ##### Upload Files & Start Processing:
572
+ - Navigate to the "Rank" tab.
573
+ - Upload the job description as a text file. This file should contain the description of the job you want to compare resumes against.
574
+ - Upload the Excel file that contains the resumes you want to rank.
575
+ - Click the "Start Processing" button.
576
+ - The app will analyze the job description and rank the resumes based on their similarity to the job description.
577
+ ######
578
+ """)
579
+ imgRnk1 = Image.open('rnk-1.png')
580
+ st.image(imgRnk1, use_column_width = True, output_format = "PNG")
581
+ st.write("""
582
+ ##### View Job Description:
583
+ - The output will display the contents of the job description for reference.
584
+ ######
585
+ """)
586
+ imgRnk2 = Image.open('rnk-2.png')
587
+ st.image(imgRnk2, use_column_width = True, output_format = "PNG")
588
+ st.write("""
589
+ ##### Add Filters:
590
+ - You can apply filters to the dataframe to narrow down your results.
591
+ ######
592
+ """)
593
+ imgRnk3 = Image.open('rnk-3.png')
594
+ st.image(imgRnk3, use_column_width = True, output_format = "PNG")
595
+ st.write("""
596
+ ##### Donwload Results:
597
+ - Once you've applied filters or are satisfied with the results, you can download the current dataframe as an Excel file by clicking the "Save Current Output as XLSX" button.
598
+ ####
599
+ """)
600
+ imgRnk4 = Image.open('rnk-4.png')
601
+ st.image(imgRnk4, use_column_width = True, output_format = "PNG")
602
+
wiki-news-300d-1M-subword.vec ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47e336cc848c697486273a9cb761ad30a3bf741d4ab26e779435bfa51491730e
3
+ size 2256858740