Spaces:
No application file
No application file
File size: 28,923 Bytes
15fa80a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import os
# import clip
from CLIP.clip import clip
import numpy as np
import torch
from scipy import linalg
from tqdm import tqdm
import visualization.plot_3d_global as plot_3d
from utils.motion_process import recover_from_ric
from tqdm import trange
def tensorborad_add_video_xyz(writer, xyz, nb_iter, tag, nb_vis=4, title_batch=None, outname=None):
xyz = xyz[:1]
bs, seq = xyz.shape[:2]
xyz = xyz.reshape(bs, seq, -1, 3)
plot_xyz = plot_3d.draw_to_batch(xyz.cpu().numpy(),title_batch, outname)
plot_xyz =np.transpose(plot_xyz, (0, 1, 4, 2, 3))
writer.add_video(tag, plot_xyz, nb_iter, fps = 20)
@torch.no_grad()
def evaluation_vqvae(out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
net.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
motion_annotation_list = []
motion_pred_list = []
R_precision_real = 0
R_precision = 0
nb_sample = 0
matching_score_real = 0
matching_score_pred = 0
for batch in val_loader:
word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token, name = batch
motion = motion.cuda()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
bs, seq = motion.shape[0], motion.shape[1]
num_joints = 21 if motion.shape[-1] == 251 else 22
pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
for i in range(bs):
pose = val_loader.dataset.inv_transform(motion[i:i+1, :m_length[i], :].detach().cpu().numpy())
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
pred_pose, loss_commit, perplexity = net(motion[i:i+1, :m_length[i]])
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
if savenpy:
np.save(os.path.join(out_dir, name[i]+'_gt.npy'), pose_xyz[:, :m_length[i]].cpu().numpy())
np.save(os.path.join(out_dir, name[i]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
pred_pose_eval[i:i+1,:m_length[i],:] = pred_pose
if i < min(4, bs):
draw_org.append(pose_xyz)
draw_pred.append(pred_xyz)
draw_text.append(caption[i])
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length)
motion_pred_list.append(em_pred)
motion_annotation_list.append(em)
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
logger.info(msg)
if draw:
writer.add_scalar('./Test/FID', fid, nb_iter)
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
if nb_iter % 5000 == 0 :
for ii in range(4):
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
if nb_iter % 5000 == 0 :
for ii in range(4):
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
if fid < best_fid :
print(fid,best_fid)
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
logger.info(msg)
best_fid, best_iter = fid, nb_iter
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
logger.info(msg)
best_div = diversity
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_div.pth'))
if R_precision[0] > best_top1 :
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
logger.info(msg)
best_top1 = R_precision[0]
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_top1.pth'))
if R_precision[1] > best_top2 :
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
logger.info(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3 :
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
logger.info(msg)
best_top3 = R_precision[2]
if matching_score_pred < best_matching :
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
logger.info(msg)
best_matching = matching_score_pred
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_matching.pth'))
if save:
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
net.train()
return best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger
@torch.no_grad()
def evaluation_transformer(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_fid_syn,best_fid_perturbation,best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, draw = True, save = True, savegif=False,PGD=None,crit=None) :
trans.eval()
#这里是不是应该clip也eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
draw_text_pred = []
motion_annotation_list = []
motion_pred_list = []
motion_pred_per_list = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
nb_sample = 0
for i in range(1):
for batch in tqdm(val_loader):
word_embeddings, pos_one_hots, clip_text, clip_text_perb, sent_len, pose, m_length, token, name = batch
bs, seq = pose.shape[:2]
num_joints = 21 if pose.shape[-1] == 251 else 22
text = clip.tokenize(clip_text, truncate=True).cuda()
text_perb = clip.tokenize(clip_text_perb, truncate=True).cuda()
feat_clip_text = clip_model.encode_text(text)[0].float()
feat_clip_text_per = clip_model.encode_text(text_perb)[0].float()
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
pred_pose_eval_per = torch.zeros((bs, seq, pose.shape[-1])).cuda()
pred_len = torch.ones(bs).long()
pred_len_per = torch.ones(bs).long()
for k in range(bs):
try:
index_motion = trans.sample(feat_clip_text[k:k+1], False)
index_motion_per = trans.sample(feat_clip_text_per[k:k+1], False)
except:
# print('---------------------')
index_motion = torch.ones(1,1).cuda().long()
index_motion_per = torch.ones(1,1).cuda().long()
pred_pose = net.forward_decoder(index_motion)
pred_pose_per = net.forward_decoder(index_motion_per)
cur_len = pred_pose.shape[1]
cur_len_per = pred_pose_per.shape[1]
pred_len[k] = min(cur_len, seq)
pred_len_per[k] = min(cur_len_per, seq)
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
pred_pose_eval_per[k:k+1, :cur_len_per] = pred_pose_per[:, :seq]
if draw:
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
if i == 0 and k < 4:
draw_pred.append(pred_xyz)
draw_text_pred.append(clip_text[k])
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
et_pred_per, em_pred_per = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval_per, pred_len_per)
if i == 0:
pose = pose.cuda().float()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
motion_pred_per_list.append(em_pred_per)
if draw:
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
for j in range(min(4, bs)):
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
draw_text.append(clip_text[j])
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
motion_pred_per_np = torch.cat(motion_pred_per_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np)
mu_per, cov_per= calculate_activation_statistics(motion_pred_per_np)
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
fid_syn = calculate_frechet_distance(gt_mu,gt_cov,mu_per,cov_per)
fid_perturbation = calculate_frechet_distance(mu_per, cov_per, mu, cov)
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f},FID_syn{fid_syn:.5f},FID_perturbation_and_origin.{fid_perturbation:.5f} Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
logger.info(msg)
if draw:
writer.add_scalar('./Test/FID', fid, nb_iter)
writer.add_scalar('./Test/FID_perturbation_and_origin', fid_perturbation, nb_iter)
writer.add_scalar('./Test/FID_syn', fid_syn, nb_iter)
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
# if nb_iter % 10000 == 0 :
# for ii in range(4):
# tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
if isinstance(best_fid, tuple):
best_fid=best_fid[0]
if isinstance(best_fid_perturbation, tuple):
best_fid_perturbation=best_fid_perturbation[0]
if fid < best_fid :
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
logger.info(msg)
best_fid, best_iter = fid, nb_iter
if save:
state_dict = clip_model.state_dict()
torch.save(state_dict, os.path.join(out_dir, 'clip_best.pth'))
torch.save({'trans' : trans.state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
msg = f"--> --> \t Current FID is {fid:.5f} !!!"
logger.info(msg)
if fid_syn < best_fid_syn:
msg = f"--> --> \t FID_syn {best_fid_syn:.5f} to {fid_syn:.5f} !!!"
logger.info(msg)
best_fid_syn = fid_syn
if fid_perturbation < best_fid_perturbation :
msg = f"--> --> \t FID_perturbation_and_origin {best_fid_perturbation:.5f} to {fid_perturbation:.5f} !!!"
logger.info(msg)
best_fid_perturbation = fid_perturbation
if matching_score_pred < best_matching :
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
logger.info(msg)
best_matching = matching_score_pred
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
logger.info(msg)
best_div = diversity
if R_precision[0] > best_top1 :
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
logger.info(msg)
best_top1 = R_precision[0]
if R_precision[1] > best_top2 :
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
logger.info(msg)
best_top2 = R_precision[1]
if R_precision[2] > best_top3 :
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
logger.info(msg)
best_top3 = R_precision[2]
if save:
state_dict = clip_model.state_dict()
torch.save(state_dict, os.path.join(out_dir, 'clip_last.pth'))
torch.save({'trans' : trans.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
trans.train()
return best_fid, best_fid_syn, best_fid_perturbation, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger
@torch.no_grad()
def evaluation_transformer_test(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid,best_fid_word_perb,best_fid_perturbation, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, clip_model, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
trans.eval()
nb_sample = 0
draw_org = []
draw_pred = []
draw_text = []
draw_text_pred = []
draw_name = []
motion_annotation_list = []
motion_pred_list = []
motion_pred_per_list = []
motion_multimodality = []
R_precision_real = 0
R_precision = 0
matching_score_real = 0
matching_score_pred = 0
nb_sample = 0
for batch in tqdm(val_loader, desc="Validation Progress"):
word_embeddings, pos_one_hots, clip_text, clip_text_perb, sent_len, pose, m_length, token, name = batch
bs, seq = pose.shape[:2]
num_joints = 21 if pose.shape[-1] == 251 else 22
text = clip.tokenize(clip_text, truncate=True).cuda()
text_perb = clip.tokenize(clip_text_perb, truncate=True).cuda()
feat_clip_text = clip_model.encode_text(text)[0].float()
feat_clip_text_per = clip_model.encode_text(text_perb)[0].float()
motion_multimodality_batch = []
for i in range(1):
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
pred_pose_eval_per = torch.zeros((bs, seq, pose.shape[-1])).cuda()
pred_len = torch.ones(bs).long()
pred_len_per = torch.ones(bs).long()
for k in range(bs):
try:
index_motion = trans.sample(feat_clip_text[k:k+1], True)
index_motion_per = trans.sample(feat_clip_text_per[k:k+1], True)
except:
index_motion = torch.ones(1,1).cuda().long()
index_motion_per = torch.ones(1,1).cuda().long()
pred_pose = net.forward_decoder(index_motion)
pred_pose_per = net.forward_decoder(index_motion_per)
cur_len = pred_pose.shape[1]
cur_len_per = pred_pose_per.shape[1]
pred_len[k] = min(cur_len, seq)
pred_len_per[k] = min(cur_len_per, seq)
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
pred_pose_eval_per[k:k+1, :cur_len_per] = pred_pose_per[:, :seq]
if i == 0 and (draw or savenpy):
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
if savenpy:
np.save(os.path.join(out_dir, name[k]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
if draw:
if i == 0:
draw_pred.append(pred_xyz)
draw_text_pred.append(clip_text[k])
draw_name.append(name[k])
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
et_pred_per, em_pred_per = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval_per, pred_len_per)
# motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1))
if i == 0:
pose = pose.cuda().float()
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
motion_annotation_list.append(em)
motion_pred_list.append(em_pred)
motion_pred_per_list.append(em_pred_per)
if draw or savenpy:
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
if savenpy:
for j in range(bs):
np.save(os.path.join(out_dir, name[j]+'_gt.npy'), pose_xyz[j][:m_length[j]].unsqueeze(0).cpu().numpy())
if draw:
for j in range(bs):
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
draw_text.append(clip_text[j])
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
R_precision_real += temp_R
matching_score_real += temp_match
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
R_precision += temp_R
matching_score_pred += temp_match
nb_sample += bs
# motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1))
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
motion_pred_per_np = torch.cat(motion_pred_per_list, dim=0).cpu().numpy()
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
mu, cov= calculate_activation_statistics(motion_pred_np) # mu cov使用的是motion_perb_np
mu_per, cov_per= calculate_activation_statistics(motion_pred_per_np)
gt_mu[np.isnan(gt_mu) | np.isinf(gt_mu)] = 0.0
gt_cov[np.isnan(gt_cov) | np.isinf(gt_cov)] = 0.0
mu[np.isnan(mu) | np.isinf(mu)] = 0.0
cov[np.isnan(cov) | np.isinf(cov)] = 0.0
mu_per[np.isnan(mu_per) | np.isinf(mu_per)] = 0.0
cov_per[np.isnan(cov_per) | np.isinf(cov_per)] = 0.0
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
R_precision_real = R_precision_real / nb_sample
R_precision = R_precision / nb_sample
matching_score_real = matching_score_real / nb_sample
matching_score_pred = matching_score_pred / nb_sample
multimodality = 0
# motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
# multimodality = calculate_multimodality(motion_multimodality, 10)
try:
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
fid_perturbation = calculate_frechet_distance(mu_per, cov_per, mu, cov)
fid_word_perb = calculate_frechet_distance(gt_mu,gt_cov,mu_per,cov_per)
except:
print('数据有问题!!')
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, FID_syn. {fid_word_perb:.5f}, FID_Perturbation. {fid_perturbation:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}, multimodality. {multimodality:.4f}"
logger.info(msg)
if draw:
for ii in range(len(draw_org)):
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_org', nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_gt.gif')] if savegif else None)
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_pred', nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_pred.gif')] if savegif else None)
trans.train()
return fid,fid_word_perb,fid_perturbation, best_iter, diversity, R_precision[0], R_precision[1], R_precision[2], matching_score_pred, multimodality, writer, logger
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1, matrix2):
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dist: N1 x N2
dist[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
dists = np.sqrt(d1 + d2 + d3) # broadcasting
return dists
def calculate_top_k(mat, top_k):
size = mat.shape[0]
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
bool_mat = (mat == gt_mat)
correct_vec = False
top_k_list = []
for i in range(top_k):
# print(correct_vec, bool_mat[:, i])
correct_vec = (correct_vec | bool_mat[:, i])
# print(correct_vec)
top_k_list.append(correct_vec[:, None])
top_k_mat = np.concatenate(top_k_list, axis=1)
return top_k_mat
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
matching_score = dist_mat.trace()
argmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argmax, top_k)
if sum_all:
return top_k_mat.sum(axis=0), matching_score
else:
return top_k_mat, matching_score
def calculate_multimodality(activation, multimodality_times):
assert len(activation.shape) == 3
assert activation.shape[1] > multimodality_times
num_per_sent = activation.shape[1]
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
return dist.mean()
def calculate_diversity(activation, diversity_times):
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
return dist.mean()
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(activations):
mu = np.mean(activations, axis=0)
cov = np.cov(activations, rowvar=False)
return mu, cov
def calculate_frechet_feature_distance(feature_list1, feature_list2):
feature_list1 = np.stack(feature_list1)
feature_list2 = np.stack(feature_list2)
# normalize the scale
mean = np.mean(feature_list1, axis=0)
std = np.std(feature_list1, axis=0) + 1e-10
feature_list1 = (feature_list1 - mean) / std
feature_list2 = (feature_list2 - mean) / std
dist = calculate_frechet_distance(
mu1=np.mean(feature_list1, axis=0),
sigma1=np.cov(feature_list1, rowvar=False),
mu2=np.mean(feature_list2, axis=0),
sigma2=np.cov(feature_list2, rowvar=False),
)
return dist |