File size: 6,455 Bytes
15fa80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from models.rotation2xyz import Rotation2xyz
import numpy as np
from trimesh import Trimesh
import os
os.environ['PYOPENGL_PLATFORM'] = "osmesa"

import torch
from visualize.simplify_loc2rot import joints2smpl
import pyrender
import matplotlib.pyplot as plt

import io
import imageio
from shapely import geometry
import trimesh
from pyrender.constants import RenderFlags
import math
# import ffmpeg
from PIL import Image

class WeakPerspectiveCamera(pyrender.Camera):
    def __init__(self,
                 scale,
                 translation,
                 znear=pyrender.camera.DEFAULT_Z_NEAR,
                 zfar=None,
                 name=None):
        super(WeakPerspectiveCamera, self).__init__(
            znear=znear,
            zfar=zfar,
            name=name,
        )
        self.scale = scale
        self.translation = translation

    def get_projection_matrix(self, width=None, height=None):
        P = np.eye(4)
        P[0, 0] = self.scale[0]
        P[1, 1] = self.scale[1]
        P[0, 3] = self.translation[0] * self.scale[0]
        P[1, 3] = -self.translation[1] * self.scale[1]
        P[2, 2] = -1
        return P

def render(motions, outdir='test_vis', device_id=0, name=None, pred=True):
    frames, njoints, nfeats = motions.shape
    MINS = motions.min(axis=0).min(axis=0)
    MAXS = motions.max(axis=0).max(axis=0)

    height_offset = MINS[1]
    motions[:, :, 1] -= height_offset
    trajec = motions[:, 0, [0, 2]]

    j2s = joints2smpl(num_frames=frames, device_id=0, cuda=True)
    rot2xyz = Rotation2xyz(device=torch.device("cuda:0"))
    faces = rot2xyz.smpl_model.faces

    if (not os.path.exists(outdir + name+'_pred.pt') and pred) or (not os.path.exists(outdir + name+'_gt.pt') and not pred): 
        print(f'Running SMPLify, it may take a few minutes.')
        motion_tensor, opt_dict = j2s.joint2smpl(motions)  # [nframes, njoints, 3]

        vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
                                        pose_rep='rot6d', translation=True, glob=True,
                                        jointstype='vertices',
                                        vertstrans=True)

        if pred:
            torch.save(vertices, outdir + name+'_pred.pt')
        else:
            torch.save(vertices, outdir + name+'_gt.pt')
    else:
        if pred:
            vertices = torch.load(outdir + name+'_pred.pt')
        else:
            vertices = torch.load(outdir + name+'_gt.pt')
    frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
    print (vertices.shape)
    MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
    MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]
    # vertices[:,:,1,:] -= MINS[1] + 1e-5


    out_list = []
    
    minx = MINS[0] - 0.5
    maxx = MAXS[0] + 0.5
    minz = MINS[2] - 0.5 
    maxz = MAXS[2] + 0.5
    polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
    polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)

    vid = []
    for i in range(frames):
        if i % 10 == 0:
            print(i)

        mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)

        base_color = (0.11, 0.53, 0.8, 0.5)
        ## OPAQUE rendering without alpha
        ## BLEND rendering consider alpha 
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.7,
            alphaMode='OPAQUE',
            baseColorFactor=base_color
        )


        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
        polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)

        bg_color = [1, 1, 1, 0.8]
        scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
        
        sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]

        camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))

        light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)

        scene.add(mesh)

        c = np.pi / 2

        scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],

        [ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],

        [ 0, np.sin(c), np.cos(c), 0],

        [ 0, 0, 0, 1]]))

        light_pose = np.eye(4)
        light_pose[:3, 3] = [0, -1, 1]
        scene.add(light, pose=light_pose.copy())

        light_pose[:3, 3] = [0, 1, 1]
        scene.add(light, pose=light_pose.copy())

        light_pose[:3, 3] = [1, 1, 2]
        scene.add(light, pose=light_pose.copy())


        c = -np.pi / 6

        scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],

                                [ 0, np.cos(c), -np.sin(c), 1.5],

                                [ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],

                                [ 0, 0, 0, 1]
                                ])
        
        # render scene
        r = pyrender.OffscreenRenderer(960, 960)

        color, _ = r.render(scene, flags=RenderFlags.RGBA)
        # Image.fromarray(color).save(outdir+name+'_'+str(i)+'.png')

        vid.append(color)

        r.delete()

    out = np.stack(vid, axis=0)
    if pred:
        imageio.mimsave(outdir + name+'_pred.gif', out, fps=20)
    else:
        imageio.mimsave(outdir + name+'_gt.gif', out, fps=20)
    




if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--filedir", type=str, default='/CV/xhr/xhr_project/Paper/text2Pose/t2m/T2M-GPT-main/visualization/pose_np', help='motion npy file dir')
    parser.add_argument('--motion-list', default=None, nargs="1", type=str, help="motion name list")
    args = parser.parse_args()

    filename_list = args.motion_list
    filedir = args.filedir
    
    for filename in filename_list:
        motions = np.load(filedir + filename+'.npy')
        print('pred', motions.shape, filename)
        render(motions[0], outdir=filedir, device_id=0, name=filename, pred=True)

        # motions = np.load(filedir + filename+'_pred.npy')
        # print('pred', motions.shape, filename)
        # render(motions[0], outdir=filedir, device_id=0, name=filename, pred=True)

        # motions = np.load(filedir + filename+'_gt.npy')
        # print('gt', motions.shape, filename)
        # render(motions[0], outdir=filedir, device_id=0, name=filename, pred=False)