Spaces:
No application file
No application file
File size: 6,455 Bytes
15fa80a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from models.rotation2xyz import Rotation2xyz
import numpy as np
from trimesh import Trimesh
import os
os.environ['PYOPENGL_PLATFORM'] = "osmesa"
import torch
from visualize.simplify_loc2rot import joints2smpl
import pyrender
import matplotlib.pyplot as plt
import io
import imageio
from shapely import geometry
import trimesh
from pyrender.constants import RenderFlags
import math
# import ffmpeg
from PIL import Image
class WeakPerspectiveCamera(pyrender.Camera):
def __init__(self,
scale,
translation,
znear=pyrender.camera.DEFAULT_Z_NEAR,
zfar=None,
name=None):
super(WeakPerspectiveCamera, self).__init__(
znear=znear,
zfar=zfar,
name=name,
)
self.scale = scale
self.translation = translation
def get_projection_matrix(self, width=None, height=None):
P = np.eye(4)
P[0, 0] = self.scale[0]
P[1, 1] = self.scale[1]
P[0, 3] = self.translation[0] * self.scale[0]
P[1, 3] = -self.translation[1] * self.scale[1]
P[2, 2] = -1
return P
def render(motions, outdir='test_vis', device_id=0, name=None, pred=True):
frames, njoints, nfeats = motions.shape
MINS = motions.min(axis=0).min(axis=0)
MAXS = motions.max(axis=0).max(axis=0)
height_offset = MINS[1]
motions[:, :, 1] -= height_offset
trajec = motions[:, 0, [0, 2]]
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=True)
rot2xyz = Rotation2xyz(device=torch.device("cuda:0"))
faces = rot2xyz.smpl_model.faces
if (not os.path.exists(outdir + name+'_pred.pt') and pred) or (not os.path.exists(outdir + name+'_gt.pt') and not pred):
print(f'Running SMPLify, it may take a few minutes.')
motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3]
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
pose_rep='rot6d', translation=True, glob=True,
jointstype='vertices',
vertstrans=True)
if pred:
torch.save(vertices, outdir + name+'_pred.pt')
else:
torch.save(vertices, outdir + name+'_gt.pt')
else:
if pred:
vertices = torch.load(outdir + name+'_pred.pt')
else:
vertices = torch.load(outdir + name+'_gt.pt')
frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
print (vertices.shape)
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]
# vertices[:,:,1,:] -= MINS[1] + 1e-5
out_list = []
minx = MINS[0] - 0.5
maxx = MAXS[0] + 0.5
minz = MINS[2] - 0.5
maxz = MAXS[2] + 0.5
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)
vid = []
for i in range(frames):
if i % 10 == 0:
print(i)
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)
base_color = (0.11, 0.53, 0.8, 0.5)
## OPAQUE rendering without alpha
## BLEND rendering consider alpha
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.7,
alphaMode='OPAQUE',
baseColorFactor=base_color
)
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)
bg_color = [1, 1, 1, 0.8]
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)
scene.add(mesh)
c = np.pi / 2
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],
[ 0, np.sin(c), np.cos(c), 0],
[ 0, 0, 0, 1]]))
light_pose = np.eye(4)
light_pose[:3, 3] = [0, -1, 1]
scene.add(light, pose=light_pose.copy())
light_pose[:3, 3] = [0, 1, 1]
scene.add(light, pose=light_pose.copy())
light_pose[:3, 3] = [1, 1, 2]
scene.add(light, pose=light_pose.copy())
c = -np.pi / 6
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],
[ 0, np.cos(c), -np.sin(c), 1.5],
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],
[ 0, 0, 0, 1]
])
# render scene
r = pyrender.OffscreenRenderer(960, 960)
color, _ = r.render(scene, flags=RenderFlags.RGBA)
# Image.fromarray(color).save(outdir+name+'_'+str(i)+'.png')
vid.append(color)
r.delete()
out = np.stack(vid, axis=0)
if pred:
imageio.mimsave(outdir + name+'_pred.gif', out, fps=20)
else:
imageio.mimsave(outdir + name+'_gt.gif', out, fps=20)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--filedir", type=str, default='/CV/xhr/xhr_project/Paper/text2Pose/t2m/T2M-GPT-main/visualization/pose_np', help='motion npy file dir')
parser.add_argument('--motion-list', default=None, nargs="1", type=str, help="motion name list")
args = parser.parse_args()
filename_list = args.motion_list
filedir = args.filedir
for filename in filename_list:
motions = np.load(filedir + filename+'.npy')
print('pred', motions.shape, filename)
render(motions[0], outdir=filedir, device_id=0, name=filename, pred=True)
# motions = np.load(filedir + filename+'_pred.npy')
# print('pred', motions.shape, filename)
# render(motions[0], outdir=filedir, device_id=0, name=filename, pred=True)
# motions = np.load(filedir + filename+'_gt.npy')
# print('gt', motions.shape, filename)
# render(motions[0], outdir=filedir, device_id=0, name=filename, pred=False)
|