Spaces:
No application file
No application file
import torch.nn as nn | |
from models.resnet import Resnet1D | |
class Encoder(nn.Module): | |
def __init__(self, | |
input_emb_width = 3, | |
output_emb_width = 512, | |
down_t = 3, | |
stride_t = 2, | |
width = 512, | |
depth = 3, | |
dilation_growth_rate = 3, | |
activation='relu', | |
norm=None): | |
super().__init__() | |
blocks = [] | |
filter_t, pad_t = stride_t * 2, stride_t // 2 | |
blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1)) | |
blocks.append(nn.ReLU()) | |
for i in range(down_t): | |
input_dim = width | |
block = nn.Sequential( | |
nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t), | |
Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm), | |
) | |
blocks.append(block) | |
blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1)) | |
self.model = nn.Sequential(*blocks) | |
def forward(self, x): | |
return self.model(x) | |
class Decoder(nn.Module): | |
def __init__(self, | |
input_emb_width = 3, | |
output_emb_width = 512, | |
down_t = 3, | |
stride_t = 2, | |
width = 512, | |
depth = 3, | |
dilation_growth_rate = 3, | |
activation='relu', | |
norm=None): | |
super().__init__() | |
blocks = [] | |
filter_t, pad_t = stride_t * 2, stride_t // 2 | |
blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1)) | |
blocks.append(nn.ReLU()) | |
for i in range(down_t): | |
out_dim = width | |
block = nn.Sequential( | |
Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm), | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
nn.Conv1d(width, out_dim, 3, 1, 1) | |
) | |
blocks.append(block) | |
blocks.append(nn.Conv1d(width, width, 3, 1, 1)) | |
blocks.append(nn.ReLU()) | |
blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1)) | |
self.model = nn.Sequential(*blocks) | |
def forward(self, x): | |
return self.model(x) | |