Spaces:
No application file
No application file
import torch.nn as nn | |
from models.encdec import Encoder, Decoder | |
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset | |
class VQVAE_251(nn.Module): | |
def __init__(self, | |
args, | |
nb_code=1024, | |
code_dim=512, | |
output_emb_width=512, | |
down_t=3, | |
stride_t=2, | |
width=512, | |
depth=3, | |
dilation_growth_rate=3, | |
activation='relu', | |
norm=None): | |
super().__init__() | |
self.code_dim = code_dim | |
self.num_code = nb_code | |
self.quant = args.quantizer | |
self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) | |
self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) | |
if args.quantizer == "ema_reset": | |
self.quantizer = QuantizeEMAReset(nb_code, code_dim, args) | |
elif args.quantizer == "orig": | |
self.quantizer = Quantizer(nb_code, code_dim, 1.0) | |
elif args.quantizer == "ema": | |
self.quantizer = QuantizeEMA(nb_code, code_dim, args) | |
elif args.quantizer == "reset": | |
self.quantizer = QuantizeReset(nb_code, code_dim, args) | |
def preprocess(self, x): | |
# (bs, T, Jx3) -> (bs, Jx3, T) | |
x = x.permute(0,2,1).float() | |
return x | |
def postprocess(self, x): | |
# (bs, Jx3, T) -> (bs, T, Jx3) | |
x = x.permute(0,2,1) | |
return x | |
def encode(self, x): | |
N, T, _ = x.shape | |
x_in = self.preprocess(x) | |
x_encoder = self.encoder(x_in) | |
x_encoder = self.postprocess(x_encoder) | |
x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C) | |
code_idx = self.quantizer.quantize(x_encoder) | |
code_idx = code_idx.view(N, -1) | |
return code_idx | |
def forward(self, x): | |
x_in = self.preprocess(x) | |
# Encode | |
x_encoder = self.encoder(x_in) | |
## quantization | |
x_quantized, loss, perplexity = self.quantizer(x_encoder) | |
## decoder | |
x_decoder = self.decoder(x_quantized) | |
x_out = self.postprocess(x_decoder) | |
return x_out, loss, perplexity | |
def forward_decoder(self, x): | |
x_d = self.quantizer.dequantize(x) | |
x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous() | |
# decoder | |
x_decoder = self.decoder(x_d) | |
x_out = self.postprocess(x_decoder) | |
return x_out | |
class HumanVQVAE(nn.Module): | |
def __init__(self, | |
args, | |
nb_code=512, | |
code_dim=512, | |
output_emb_width=512, | |
down_t=3, | |
stride_t=2, | |
width=512, | |
depth=3, | |
dilation_growth_rate=3, | |
activation='relu', | |
norm=None): | |
super().__init__() | |
self.nb_joints = 21 if args.dataname == 'kit' else 22 | |
self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm) | |
def encode(self, x): | |
b, t, c = x.size() | |
quants = self.vqvae.encode(x) # (N, T) | |
return quants | |
def forward(self, x): | |
x_out, loss, perplexity = self.vqvae(x) | |
return x_out, loss, perplexity | |
def forward_decoder(self, x): | |
x_out = self.vqvae.forward_decoder(x) | |
return x_out | |