Spaces:
No application file
No application file
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class ReConsLoss(nn.Module): | |
def __init__(self, recons_loss, nb_joints): | |
super(ReConsLoss, self).__init__() | |
if recons_loss == 'l1': | |
self.Loss = torch.nn.L1Loss() | |
elif recons_loss == 'l2' : | |
self.Loss = torch.nn.MSELoss() | |
elif recons_loss == 'l1_smooth' : | |
self.Loss = torch.nn.SmoothL1Loss() | |
# 4 global motion associated to root | |
# 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d) | |
# 3 global vel xyz | |
# 4 foot contact | |
self.nb_joints = nb_joints | |
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4 | |
def forward(self, motion_pred, motion_gt) : | |
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim]) | |
return loss | |
def forward_vel(self, motion_pred, motion_gt) : | |
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4]) | |
return loss | |
def loss_robust(origin_prediction,perturbation_prediction,loss='l2'): | |
if loss=='l1': | |
return torch.nn.L1Loss(origin_prediction,perturbation_prediction) | |
if loss=='l2': | |
return torch.nn.MSELoss(origin_prediction,perturbation_prediction) | |
if loss=='l1_smooth': | |
return torch.nn.SmoothL1Loss(origin_prediction,perturbation_prediction) | |
if loss=='jsd': | |
return calculate_kl_divergence(origin_prediction,perturbation_prediction) | |
def calculate_kl_divergence(p, q): | |
return torch.sum(p * (torch.log2(p) - torch.log2(q))) | |
def calculate_jsd_loss(p, q): | |
# 将概率分布标准化为概率密度 | |
p_normalized = F.normalize(p, p=1, dim=-1) | |
q_normalized = F.normalize(q, p=1, dim=-1) | |
# 计算平均分布 | |
m = 0.5 * (p_normalized + q_normalized) | |
# 计算两个分布与平均分布的 KL 散度 | |
kl_p = calculate_kl_divergence(p_normalized, m) | |
kl_q = calculate_kl_divergence(q_normalized, m) | |
# 计算 JSD | |
jsd_loss = 0.5 * (kl_p + kl_q) | |
return jsd_loss |