Xhr0306's picture
update
15fa80a
raw
history blame
2.12 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class ReConsLoss(nn.Module):
def __init__(self, recons_loss, nb_joints):
super(ReConsLoss, self).__init__()
if recons_loss == 'l1':
self.Loss = torch.nn.L1Loss()
elif recons_loss == 'l2' :
self.Loss = torch.nn.MSELoss()
elif recons_loss == 'l1_smooth' :
self.Loss = torch.nn.SmoothL1Loss()
# 4 global motion associated to root
# 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d)
# 3 global vel xyz
# 4 foot contact
self.nb_joints = nb_joints
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4
def forward(self, motion_pred, motion_gt) :
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim])
return loss
def forward_vel(self, motion_pred, motion_gt) :
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4])
return loss
def loss_robust(origin_prediction,perturbation_prediction,loss='l2'):
if loss=='l1':
return torch.nn.L1Loss(origin_prediction,perturbation_prediction)
if loss=='l2':
return torch.nn.MSELoss(origin_prediction,perturbation_prediction)
if loss=='l1_smooth':
return torch.nn.SmoothL1Loss(origin_prediction,perturbation_prediction)
if loss=='jsd':
return calculate_kl_divergence(origin_prediction,perturbation_prediction)
def calculate_kl_divergence(p, q):
return torch.sum(p * (torch.log2(p) - torch.log2(q)))
def calculate_jsd_loss(p, q):
# 将概率分布标准化为概率密度
p_normalized = F.normalize(p, p=1, dim=-1)
q_normalized = F.normalize(q, p=1, dim=-1)
# 计算平均分布
m = 0.5 * (p_normalized + q_normalized)
# 计算两个分布与平均分布的 KL 散度
kl_p = calculate_kl_divergence(p_normalized, m)
kl_q = calculate_kl_divergence(q_normalized, m)
# 计算 JSD
jsd_loss = 0.5 * (kl_p + kl_q)
return jsd_loss