import torch from torch.utils import data import numpy as np from os.path import join as pjoin import random import codecs as cs from tqdm import tqdm class VQMotionDataset(data.Dataset): def __init__(self, dataset_name, window_size = 64, unit_length = 4): self.window_size = window_size self.unit_length = unit_length self.dataset_name = dataset_name if dataset_name == 't2m': self.data_root = './dataset/HumanML3D' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 22 self.max_motion_length = 196 self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' elif dataset_name == 'kit': self.data_root = './dataset/KIT-ML' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 21 self.max_motion_length = 196 self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' joints_num = self.joints_num mean = np.load(pjoin(self.meta_dir, 'mean.npy')) std = np.load(pjoin(self.meta_dir, 'std.npy')) split_file = pjoin(self.data_root, 'train.txt') self.data = [] self.lengths = [] id_list = [] with cs.open(split_file, 'r') as f: for line in f.readlines(): id_list.append(line.strip()) for name in tqdm(id_list): try: motion = np.load(pjoin(self.motion_dir, name + '.npy')) if motion.shape[0] < self.window_size: continue self.lengths.append(motion.shape[0] - self.window_size) self.data.append(motion) except: # Some motion may not exist in KIT dataset pass self.mean = mean self.std = std print("Total number of motions {}".format(len(self.data))) def inv_transform(self, data): return data * self.std + self.mean def compute_sampling_prob(self) : prob = np.array(self.lengths, dtype=np.float32) prob /= np.sum(prob) return prob def __len__(self): return len(self.data) def __getitem__(self, item): motion = self.data[item] idx = random.randint(0, len(motion) - self.window_size) motion = motion[idx:idx+self.window_size] "Z Normalization" motion = (motion - self.mean) / self.std return motion def DATALoader(dataset_name, batch_size, num_workers = 8, window_size = 64, unit_length = 4): trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length) prob = trainSet.compute_sampling_prob() sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True) train_loader = torch.utils.data.DataLoader(trainSet, batch_size, shuffle=True, #sampler=sampler, num_workers=num_workers, #collate_fn=collate_fn, drop_last = True) return train_loader def cycle(iterable): while True: for x in iterable: yield x