Spaces:
Runtime error
Runtime error
File size: 15,230 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
@is_pipeline_test
class ZeroShotClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
classifier = ZeroShotClassificationPipeline(
model=model, tokenizer=tokenizer, candidate_labels=["polics", "health"]
)
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def run_pipeline_test(self, classifier, _):
outputs = classifier("Who are you voting for in 2020?", candidate_labels="politics")
self.assertEqual(outputs, {"sequence": ANY(str), "labels": [ANY(str)], "scores": [ANY(float)]})
# No kwarg
outputs = classifier("Who are you voting for in 2020?", ["politics"])
self.assertEqual(outputs, {"sequence": ANY(str), "labels": [ANY(str)], "scores": [ANY(float)]})
outputs = classifier("Who are you voting for in 2020?", candidate_labels=["politics"])
self.assertEqual(outputs, {"sequence": ANY(str), "labels": [ANY(str)], "scores": [ANY(float)]})
outputs = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health")
self.assertEqual(
outputs, {"sequence": ANY(str), "labels": [ANY(str), ANY(str)], "scores": [ANY(float), ANY(float)]}
)
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0)
outputs = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"])
self.assertEqual(
outputs, {"sequence": ANY(str), "labels": [ANY(str), ANY(str)], "scores": [ANY(float), ANY(float)]}
)
self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0)
outputs = classifier(
"Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}"
)
self.assertEqual(outputs, {"sequence": ANY(str), "labels": [ANY(str)], "scores": [ANY(float)]})
# https://github.com/huggingface/transformers/issues/13846
outputs = classifier(["I am happy"], ["positive", "negative"])
self.assertEqual(
outputs,
[
{"sequence": ANY(str), "labels": [ANY(str), ANY(str)], "scores": [ANY(float), ANY(float)]}
for i in range(1)
],
)
outputs = classifier(["I am happy", "I am sad"], ["positive", "negative"])
self.assertEqual(
outputs,
[
{"sequence": ANY(str), "labels": [ANY(str), ANY(str)], "scores": [ANY(float), ANY(float)]}
for i in range(2)
],
)
with self.assertRaises(ValueError):
classifier("", candidate_labels="politics")
with self.assertRaises(TypeError):
classifier(None, candidate_labels="politics")
with self.assertRaises(ValueError):
classifier("Who are you voting for in 2020?", candidate_labels="")
with self.assertRaises(TypeError):
classifier("Who are you voting for in 2020?", candidate_labels=None)
with self.assertRaises(ValueError):
classifier(
"Who are you voting for in 2020?",
candidate_labels="politics",
hypothesis_template="Not formatting template",
)
with self.assertRaises(AttributeError):
classifier(
"Who are you voting for in 2020?",
candidate_labels="politics",
hypothesis_template=None,
)
self.run_entailment_id(classifier)
def run_entailment_id(self, zero_shot_classifier: Pipeline):
config = zero_shot_classifier.model.config
original_label2id = config.label2id
original_entailment = zero_shot_classifier.entailment_id
config.label2id = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(zero_shot_classifier.entailment_id, -1)
config.label2id = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(zero_shot_classifier.entailment_id, 0)
config.label2id = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(zero_shot_classifier.entailment_id, 0)
config.label2id = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(zero_shot_classifier.entailment_id, 2)
zero_shot_classifier.model.config.label2id = original_label2id
self.assertEqual(original_entailment, zero_shot_classifier.entailment_id)
@require_torch
def test_truncation(self):
zero_shot_classifier = pipeline(
"zero-shot-classification",
model="sshleifer/tiny-distilbert-base-cased-distilled-squad",
framework="pt",
)
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]
)
@require_torch
def test_small_model_pt(self):
zero_shot_classifier = pipeline(
"zero-shot-classification",
model="sshleifer/tiny-distilbert-base-cased-distilled-squad",
framework="pt",
)
outputs = zero_shot_classifier(
"Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.333, 0.333, 0.333],
},
)
@require_tf
def test_small_model_tf(self):
zero_shot_classifier = pipeline(
"zero-shot-classification",
model="sshleifer/tiny-distilbert-base-cased-distilled-squad",
framework="tf",
)
outputs = zero_shot_classifier(
"Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": "Who are you voting for in 2020?",
"labels": ["science", "public health", "politics"],
"scores": [0.333, 0.333, 0.333],
},
)
@slow
@require_torch
def test_large_model_pt(self):
zero_shot_classifier = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt")
outputs = zero_shot_classifier(
"Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.976, 0.015, 0.009],
},
)
outputs = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data.",
candidate_labels=["machine learning", "statistics", "translation", "vision"],
multi_label=True,
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.817, 0.713, 0.018, 0.018],
},
)
@slow
@require_tf
def test_large_model_tf(self):
zero_shot_classifier = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf")
outputs = zero_shot_classifier(
"Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": "Who are you voting for in 2020?",
"labels": ["politics", "public health", "science"],
"scores": [0.976, 0.015, 0.009],
},
)
outputs = zero_shot_classifier(
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"
" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"
" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"
" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"
" machine translation tasks show these models to be superior in quality while being more parallelizable"
" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"
" English-to-German translation task, improving over the existing best results, including ensembles by"
" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"
" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"
" fraction of the training costs of the best models from the literature. We show that the Transformer"
" generalizes well to other tasks by applying it successfully to English constituency parsing both with"
" large and limited training data.",
candidate_labels=["machine learning", "statistics", "translation", "vision"],
multi_label=True,
)
self.assertEqual(
nested_simplify(outputs),
{
"sequence": (
"The dominant sequence transduction models are based on complex recurrent or convolutional neural"
" networks in an encoder-decoder configuration. The best performing models also connect the"
" encoder and decoder through an attention mechanism. We propose a new simple network"
" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"
" and convolutions entirely. Experiments on two machine translation tasks show these models to be"
" superior in quality while being more parallelizable and requiring significantly less time to"
" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"
" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"
" English-to-French translation task, our model establishes a new single-model state-of-the-art"
" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"
" costs of the best models from the literature. We show that the Transformer generalizes well to"
" other tasks by applying it successfully to English constituency parsing both with large and"
" limited training data."
),
"labels": ["translation", "machine learning", "vision", "statistics"],
"scores": [0.817, 0.713, 0.018, 0.018],
},
)
|