File size: 8,029 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# coding=utf-8
# Copyright 2022 The Microsoft, The Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import enum
import functools
import math
import re

# The following script is adapted from the script of TaPas.
# Original: https://github.com/google-research/tapas/master/wikisql_utils.py
from typing import Any, List, Text


EMPTY_ANSWER = "none"
EMPTY_ANSWER_AGG = "none"


def _split_thousands(delimiter, value):
    split = value.split(delimiter)
    return len(split) > 1 and any((len(x) == 3 for x in split))


def convert_to_float(value):
    """Converts value to a float using a series of increasingly complex heuristics.
    Args:
      value: object that needs to be converted. Allowed types include
        float/int/strings.
    Returns:
      A float interpretation of value.
    Raises:
      ValueError if the float conversion of value fails.
    """
    if isinstance(value, float):
        return value
    if isinstance(value, int):
        return float(value)
    if not isinstance(value, str):
        raise ValueError("Argument value is not a string. Can't parse it as float")
    sanitized = value

    try:
        # Example: 1,000.7
        if "." in sanitized and "," in sanitized:
            return float(sanitized.replace(",", ""))
        # 1,000
        if "," in sanitized and _split_thousands(",", sanitized):
            return float(sanitized.replace(",", ""))
        # 5,5556
        if "," in sanitized and sanitized.count(",") == 1 and not _split_thousands(",", sanitized):
            return float(sanitized.replace(",", "."))
        # 0.0.0.1
        if sanitized.count(".") > 1:
            return float(sanitized.replace(".", ""))
        # 0,0,0,1
        if sanitized.count(",") > 1:
            return float(sanitized.replace(",", ""))
        return float(sanitized)
    except ValueError:
        # Avoid adding the sanitized value in the error message.
        raise ValueError("Unable to convert value to float")


def _normalize_float(answer):
    if answer is None:
        return None
    try:
        value = convert_to_float(answer)
        if isinstance(value, float) and math.isnan(value):
            return None
        return value
    except ValueError:
        return answer.lower()


_TYPE_CONVERTER = {
    "text": lambda x: x,
    "real": convert_to_float,
}


class _Aggregation(enum.Enum):
    """Aggregations as defined by WikiSQL. Indexes match the data."""

    NONE = 0
    MAX = 1
    MIN = 2
    COUNT = 3
    SUM = 4
    AVERAGE = 5


class _Operator(enum.Enum):
    """The boolean operators used by WikiSQL. Indexes match the data."""

    EQUALS = 0
    GREATER = 1
    LESSER = 2


@dataclasses.dataclass
class _Condition:
    """Represents an SQL where clauses (e.g A = "a" or B > 5)."""

    column: Text
    operator: _Operator
    cmp_value: Any


_TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL)


def _normalize_for_match(x):
    return list(_TOKENIZER.findall(x.lower()))


def _compare(operator, src, tgt):
    if operator == _Operator.EQUALS:
        return src == tgt
    elif operator == _Operator.GREATER:
        return src > tgt
    elif operator == _Operator.LESSER:
        return src < tgt
    raise ValueError(f"Unknown operator: {operator}")


def _parse_value(table, column, cell_value):
    """Convert numeric values to floats and keeps everything else as string."""
    types = table["types"]
    return _TYPE_CONVERTER[types[column]](cell_value)


def _is_string(x):
    return isinstance(x, str)


def _respect_conditions(table, row, conditions):
    """True if 'row' satisfies all 'conditions'."""
    for cond in conditions:
        table_value = row[cond.column]

        cmp_value = _parse_value(table, cond.column, cond.cmp_value)

        if _is_string(table_value) and _is_string(cmp_value):
            table_value = _normalize_for_match(table_value)
            cmp_value = _normalize_for_match(cmp_value)

        if not isinstance(table_value, type(cmp_value)):
            raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value)))

        if not _compare(cond.operator, table_value, cmp_value):
            return False
    return True


def _get_float_answer(table, answer_coordinates, aggregation_op):
    """Applies operation to produce reference float answer."""
    if not answer_coordinates:
        if aggregation_op == _Aggregation.COUNT:
            return 0.0
        else:
            return EMPTY_ANSWER_AGG

    # Count can support non numeric answers.
    if aggregation_op == _Aggregation.COUNT:
        return float(len(answer_coordinates))

    # If we have just one answer, if float returns it or try a conversion.
    values = [table["rows"][i][j] for (i, j) in answer_coordinates]
    if len(answer_coordinates) == 1:
        try:
            return convert_to_float(values[0])
        except ValueError as e:
            if aggregation_op != _Aggregation.NONE:
                raise e

    if aggregation_op == _Aggregation.NONE:
        return None

    # Other aggregation only support numeric values. Bail out if we have strings.
    if not all((isinstance(v, (int, float)) for v in values)):
        return None

    if aggregation_op == _Aggregation.SUM:
        return float(sum(values))
    elif aggregation_op == _Aggregation.AVERAGE:
        return sum(values) / len(answer_coordinates)
    else:
        raise ValueError(f"Unknown aggregation: {aggregation_op}")


def _get_answer_coordinates(table, sql_query):
    """Retrieves references coordinates by executing SQL."""
    # MAX and MIN are automatically supported by the model.
    aggregation_op_index = sql_query["agg"]
    if aggregation_op_index >= 3:
        aggregation_op = _Aggregation(aggregation_op_index)
    else:
        aggregation_op = _Aggregation.NONE

    target_column = sql_query["sel"]
    conditions = [
        _Condition(column, _Operator(operator), cmp_value)
        for column, operator, cmp_value in zip(
            sql_query["conds"]["column_index"], sql_query["conds"]["operator_index"], sql_query["conds"]["condition"]
        )
    ]

    indices = []
    for row in range(len(table["rows"])):
        if _respect_conditions(table, table["rows"][row], conditions):
            indices.append((row, target_column))

    if not indices:
        return [], aggregation_op

    if len(indices) == 1:
        return indices, aggregation_op

    # Parsing of MIN/MAX.
    if aggregation_op_index in (1, 2):
        operators = {2: min, 1: max}
        values = [(table["rows"][i][j], index) for index, (i, j) in enumerate(indices)]
        reduced = functools.reduce(operators[sql_query["agg"]], values)

        ret = [indices[reduced[1]]]
        return ret, _Aggregation.NONE

    return indices, aggregation_op


def _get_answer_text(table, answer_coordinates, float_answer):
    if float_answer is not None:
        return [str(float_answer)]
    return [str(table["real_rows"][r][c]) for r, c in answer_coordinates]


def retrieve_wikisql_query_answer_tapas(table, example) -> List:
    answer_coordinates, aggregation_op = _get_answer_coordinates(table, example)
    float_answer = _get_float_answer(table, answer_coordinates, aggregation_op)
    answer_text = _get_answer_text(table, answer_coordinates, float_answer)
    # keep the original data the same with TaPas
    if len(answer_text) == 0:
        answer_text = [EMPTY_ANSWER]
    return answer_text