File size: 29,916 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Data2VecAudio model. """

import math
import unittest

import numpy as np
from datasets import load_dataset

from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from transformers import Data2VecAudioConfig, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_soundfile, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        Data2VecAudioForAudioFrameClassification,
        Data2VecAudioForCTC,
        Data2VecAudioForSequenceClassification,
        Data2VecAudioForXVector,
        Data2VecAudioModel,
        Wav2Vec2Processor,
    )
    from transformers.models.data2vec.modeling_data2vec_audio import _compute_mask_indices


class Data2VecAudioModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        mask_time_prob=0.5,
        mask_time_length=2,
        vocab_size=32,
        num_adapter_layers=1,
        adapter_stride=2,
        tdnn_dim=(32, 32),
        tdnn_kernel=(5, 3),
        tdnn_dilation=(1, 2),
        xvector_output_dim=32,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.num_adapter_layers = num_adapter_layers
        self.adapter_stride = adapter_stride
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
        self.scope = scope
        self.tdnn_dim = tdnn_dim
        self.tdnn_kernel = tdnn_kernel
        self.tdnn_dilation = tdnn_dilation
        self.xvector_output_dim = xvector_output_dim

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

        self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return Data2VecAudioConfig(
            hidden_size=self.hidden_size,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            mask_time_prob=self.mask_time_prob,
            mask_time_length=self.mask_time_length,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
            num_adapter_layers=self.num_adapter_layers,
            adapter_stride=self.adapter_stride,
            tdnn_dim=self.tdnn_dim,
            tdnn_kernel=self.tdnn_kernel,
            tdnn_dilation=self.tdnn_dilation,
            xvector_output_dim=self.xvector_output_dim,
        )

    def create_and_check_model(self, config, input_values, attention_mask):
        model = Data2VecAudioModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
        config.add_adapter = True
        model = Data2VecAudioModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
        )

    def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 8
        model = Data2VecAudioModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
        )

    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Data2VecAudioModel(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

    def check_ctc_loss(self, config, input_values, *args):
        model = Data2VecAudioForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))

    def check_seq_classifier_loss(self, config, input_values, *args):
        model = Data2VecAudioForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Data2VecAudioForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
        model.freeze_feature_encoder()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Data2VecAudioForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_xvector_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Data2VecAudioForXVector(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Data2VecAudioForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with self.parent.assertRaises(ValueError):
            model(input_values, labels=labels)

    def prepare_config_and_inputs_for_common(self):
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
class Data2VecAudioModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            Data2VecAudioForCTC,
            Data2VecAudioModel,
            Data2VecAudioForSequenceClassification,
            Data2VecAudioForAudioFrameClassification,
            Data2VecAudioForXVector,
        )
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {
            "audio-classification": Data2VecAudioForSequenceClassification,
            "automatic-speech-recognition": Data2VecAudioForCTC,
            "feature-extraction": Data2VecAudioModel,
        }
        if is_torch_available()
        else {}
    )
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = Data2VecAudioModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Data2VecAudioConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)

    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

    # Data2VecAudio has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Data2VecAudio cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Data2VecAudio has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_flax_to_pt(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_pt_to_flax(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
                    "objective.weight",
                ]
                if param.requires_grad:
                    if any([x in name for x in uniform_init_parms]):
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

    def test_mask_feature_prob_ctc(self):
        model = Data2VecAudioForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-data2vec-seq-class", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Data2VecAudioForCTC.from_pretrained(
            "facebook/data2vec-audio-base-960h", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 299, 32))

    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = Data2VecAudioModel.from_pretrained("facebook/data2vec-audio-base")
        self.assertIsNotNone(model)


@require_torch
class Data2VecAudioUtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_low_prob(self):
        # with these settings num_masked_spans=0.5, which means probabilistic rounding
        # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
        # the other 5 out of 10, cases num_masked_spans=1
        n_trials = 100
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        count_dimensions_masked = 0
        count_dimensions_not_masked = 0

        for _ in range(n_trials):
            mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
            mask = torch.from_numpy(mask).to(torch_device)

            num_masks = torch.sum(mask).item()

            if num_masks > 0:
                count_dimensions_masked += 1
            else:
                count_dimensions_not_masked += 1

        # as we test for at least 10 masked dimension and at least
        # 10 non-masked dimension, this test could fail with probability:
        # P(100 coin flips, at most 9 heads) = 1.66e-18
        self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
        self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
        )
        mask = torch.from_numpy(mask).to(torch_device)

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

    def test_compute_mask_indices_short_audio(self):
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        # force one example to be heavily padded
        attention_mask[0, 5:] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
        )

        # make sure that non-padded examples cannot be padded
        self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())


@require_torch
@require_soundfile
@slow
class Data2VecAudioModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

    def test_inference_ctc_normal(self):
        model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h")
        model.to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True)
        input_speech = self._load_datasamples(1)

        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_batched(self):
        model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True)

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with thousands of spectators were trivialities not worth thinking about",
            "his instant of panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)