Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import json | |
import logging | |
import os | |
import sys | |
from unittest.mock import patch | |
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow | |
SRC_DIRS = [ | |
os.path.join(os.path.dirname(__file__), dirname) | |
for dirname in [ | |
"text-classification", | |
"language-modeling", | |
"summarization", | |
"token-classification", | |
"question-answering", | |
] | |
] | |
sys.path.extend(SRC_DIRS) | |
if SRC_DIRS is not None: | |
import run_clm_flax | |
import run_flax_glue | |
import run_flax_ner | |
import run_mlm_flax | |
import run_qa | |
import run_summarization_flax | |
import run_t5_mlm_flax | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
def get_setup_file(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-f") | |
args = parser.parse_args() | |
return args.f | |
def get_results(output_dir, split="eval"): | |
path = os.path.join(output_dir, f"{split}_results.json") | |
if os.path.exists(path): | |
with open(path, "r") as f: | |
return json.load(f) | |
raise ValueError(f"can't find {path}") | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class ExamplesTests(TestCasePlus): | |
def test_run_glue(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_glue.py | |
--model_name_or_path distilbert-base-uncased | |
--output_dir {tmp_dir} | |
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv | |
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--learning_rate=1e-4 | |
--eval_steps=2 | |
--warmup_steps=2 | |
--seed=42 | |
--max_seq_length=128 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_flax_glue.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
def test_run_clm(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_clm_flax.py | |
--model_name_or_path distilgpt2 | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--do_train | |
--do_eval | |
--block_size 128 | |
--per_device_train_batch_size 4 | |
--per_device_eval_batch_size 4 | |
--num_train_epochs 2 | |
--logging_steps 2 --eval_steps 2 | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_clm_flax.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["eval_perplexity"], 100) | |
def test_run_summarization(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_summarization.py | |
--model_name_or_path t5-small | |
--train_file tests/fixtures/tests_samples/xsum/sample.json | |
--validation_file tests/fixtures/tests_samples/xsum/sample.json | |
--test_file tests/fixtures/tests_samples/xsum/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--num_train_epochs=3 | |
--warmup_steps=8 | |
--do_train | |
--do_eval | |
--do_predict | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--predict_with_generate | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_summarization_flax.main() | |
result = get_results(tmp_dir, split="test") | |
self.assertGreaterEqual(result["test_rouge1"], 10) | |
self.assertGreaterEqual(result["test_rouge2"], 2) | |
self.assertGreaterEqual(result["test_rougeL"], 7) | |
self.assertGreaterEqual(result["test_rougeLsum"], 7) | |
def test_run_mlm(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_mlm.py | |
--model_name_or_path distilroberta-base | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--max_seq_length 128 | |
--per_device_train_batch_size 4 | |
--per_device_eval_batch_size 4 | |
--logging_steps 2 --eval_steps 2 | |
--do_train | |
--do_eval | |
--num_train_epochs=1 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_mlm_flax.main() | |
result = get_results(tmp_dir) | |
self.assertLess(result["eval_perplexity"], 42) | |
def test_run_t5_mlm(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_t5_mlm_flax.py | |
--model_name_or_path t5-small | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--do_train | |
--do_eval | |
--max_seq_length 128 | |
--per_device_train_batch_size 4 | |
--per_device_eval_batch_size 4 | |
--num_train_epochs 2 | |
--logging_steps 2 --eval_steps 2 | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_t5_mlm_flax.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.42) | |
def test_run_ner(self): | |
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu | |
epochs = 7 if get_gpu_count() > 1 else 2 | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_flax_ner.py | |
--model_name_or_path bert-base-uncased | |
--train_file tests/fixtures/tests_samples/conll/sample.json | |
--validation_file tests/fixtures/tests_samples/conll/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--do_train | |
--do_eval | |
--warmup_steps=2 | |
--learning_rate=2e-4 | |
--logging_steps 2 --eval_steps 2 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=2 | |
--num_train_epochs={epochs} | |
--seed 7 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_flax_ner.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
self.assertGreaterEqual(result["eval_f1"], 0.3) | |
def test_run_qa(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
run_qa.py | |
--model_name_or_path bert-base-uncased | |
--version_2_with_negative | |
--train_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--output_dir {tmp_dir} | |
--overwrite_output_dir | |
--num_train_epochs=3 | |
--warmup_steps=2 | |
--do_train | |
--do_eval | |
--logging_steps 2 --eval_steps 2 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
""".split() | |
with patch.object(sys, "argv", testargs): | |
run_qa.main() | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_f1"], 30) | |
self.assertGreaterEqual(result["eval_exact"], 30) | |