multimodal / transformers /examples /pytorch /test_pytorch_examples.py
Li
add transformers
455a40f
raw
history blame
20.2 kB
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
import torch
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
from transformers.utils import is_apex_available
SRC_DIRS = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-generation",
"text-classification",
"token-classification",
"language-modeling",
"multiple-choice",
"question-answering",
"summarization",
"translation",
"image-classification",
"speech-recognition",
"audio-classification",
"speech-pretraining",
"image-pretraining",
"semantic-segmentation",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_audio_classification
import run_clm
import run_generation
import run_glue
import run_image_classification
import run_mae
import run_mlm
import run_ner
import run_qa as run_squad
import run_semantic_segmentation
import run_seq2seq_qa as run_squad_seq2seq
import run_speech_recognition_ctc
import run_speech_recognition_seq2seq
import run_summarization
import run_swag
import run_translation
import run_wav2vec2_pretraining_no_trainer
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f
def get_results(output_dir):
results = {}
path = os.path.join(output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
results = json.load(f)
else:
raise ValueError(f"can't find {path}")
return results
def is_cuda_and_apex_available():
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
return is_using_cuda and is_apex_available()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class ExamplesTests(TestCasePlus):
def test_run_glue(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_glue.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
def test_run_clm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_clm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 100)
def test_run_clm_config_overrides(self):
# test that config_overrides works, despite the misleading dumps of default un-updated
# config via tokenizer
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_type gpt2
--tokenizer_name gpt2
--train_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--config_overrides n_embd=10,n_head=2
""".split()
if torch_device != "cuda":
testargs.append("--no_cuda")
logger = run_clm.logger
with patch.object(sys, "argv", testargs):
with CaptureLogger(logger) as cl:
run_clm.main()
self.assertIn('"n_embd": 10', cl.out)
self.assertIn('"n_head": 2', cl.out)
def test_run_mlm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--prediction_loss_only
--num_train_epochs=1
""".split()
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_mlm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 42)
def test_run_ner(self):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
epochs = 7 if get_gpu_count() > 1 else 2
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_ner.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
self.assertLess(result["eval_loss"], 0.5)
def test_run_squad(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_squad.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_squad_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_seq2seq_qa.py
--model_name_or_path t5-small
--context_column context
--question_column question
--answer_column answers
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_squad_seq2seq.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_swag(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_swag.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=20
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_swag.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_generation(self):
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
if is_cuda_and_apex_available():
testargs.append("--fp16")
model_type, model_name = (
"--model_type=gpt2",
"--model_name_or_path=sshleifer/tiny-gpt2",
)
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result[0]), 10)
@slow
def test_run_summarization(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_rouge1"], 10)
self.assertGreaterEqual(result["eval_rouge2"], 2)
self.assertGreaterEqual(result["eval_rougeL"], 7)
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
@slow
def test_run_translation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_translation.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
--source_lang en_XX
--target_lang ro_RO
""".split()
with patch.object(sys, "argv", testargs):
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)
def test_run_image_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_image_classification.py
--output_dir {tmp_dir}
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_image_classification.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_run_speech_recognition_ctc(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_speech_recognition_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_seq2seq.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 4
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_seq2seq.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_audio_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_audio_classification.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name anton-l/superb_demo
--dataset_config_name ks
--train_split_name test
--eval_split_name test
--audio_column_name audio
--label_column_name label
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--num_train_epochs 10
--max_steps 50
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_audio_classification.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_wav2vec2_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_wav2vec2_pretraining_no_trainer.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_names clean
--dataset_split_names validation
--learning_rate 1e-4
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--preprocessing_num_workers 16
--max_train_steps 2
--validation_split_percentage 5
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_wav2vec2_pretraining_no_trainer.main()
model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_vit_mae_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mae.py
--output_dir {tmp_dir}
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_mae.main()
model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_semantic_segmentation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_semantic_segmentation.py
--output_dir {tmp_dir}
--dataset_name huggingface/semantic-segmentation-test-sample
--do_train
--do_eval
--remove_unused_columns False
--overwrite_output_dir True
--max_steps 10
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--seed 32
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_semantic_segmentation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)