Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Usage: | |
# ./gen-card-facebook-wmt19.py | |
import os | |
from pathlib import Path | |
def write_model_card(model_card_dir, src_lang, tgt_lang): | |
texts = { | |
"en": "Machine learning is great, isn't it?", | |
"ru": "Машинное обучение - это здорово, не так ли?", | |
"de": "Maschinelles Lernen ist großartig, oder?", | |
} | |
# BLUE scores as follows: | |
# "pair": [fairseq, transformers] | |
scores = { | |
"ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], | |
"en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], | |
"en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], | |
"de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], | |
} | |
pair = f"{src_lang}-{tgt_lang}" | |
readme = f""" | |
--- | |
language: | |
- {src_lang} | |
- {tgt_lang} | |
thumbnail: | |
tags: | |
- translation | |
- wmt19 | |
license: apache-2.0 | |
datasets: | |
- wmt19 | |
metrics: | |
- bleu | |
--- | |
# FSMT | |
## Model description | |
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. | |
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). | |
The abbreviation FSMT stands for FairSeqMachineTranslation | |
All four models are available: | |
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) | |
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) | |
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) | |
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) | |
## Intended uses & limitations | |
#### How to use | |
```python | |
from transformers import FSMTForConditionalGeneration, FSMTTokenizer | |
mname = "facebook/wmt19-{src_lang}-{tgt_lang}" | |
tokenizer = FSMTTokenizer.from_pretrained(mname) | |
model = FSMTForConditionalGeneration.from_pretrained(mname) | |
input = "{texts[src_lang]}" | |
input_ids = tokenizer.encode(input, return_tensors="pt") | |
outputs = model.generate(input_ids) | |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(decoded) # {texts[tgt_lang]} | |
``` | |
#### Limitations and bias | |
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) | |
## Training data | |
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). | |
## Eval results | |
pair | fairseq | transformers | |
-------|---------|---------- | |
{pair} | {scores[pair][0]} | {scores[pair][1]} | |
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: | |
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). | |
- re-ranking | |
The score was calculated using this code: | |
```bash | |
git clone https://github.com/huggingface/transformers | |
cd transformers | |
export PAIR={pair} | |
export DATA_DIR=data/$PAIR | |
export SAVE_DIR=data/$PAIR | |
export BS=8 | |
export NUM_BEAMS=15 | |
mkdir -p $DATA_DIR | |
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source | |
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target | |
echo $PAIR | |
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS | |
``` | |
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. | |
## Data Sources | |
- [training, etc.](http://www.statmt.org/wmt19/) | |
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) | |
### BibTeX entry and citation info | |
```bibtex | |
@inproceedings{{..., | |
year={{2020}}, | |
title={{Facebook FAIR's WMT19 News Translation Task Submission}}, | |
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, | |
booktitle={{Proc. of WMT}}, | |
}} | |
``` | |
## TODO | |
- port model ensemble (fairseq uses 4 model checkpoints) | |
""" | |
os.makedirs(model_card_dir, exist_ok=True) | |
path = os.path.join(model_card_dir, "README.md") | |
print(f"Generating {path}") | |
with open(path, "w", encoding="utf-8") as f: | |
f.write(readme) | |
# make sure we are under the root of the project | |
repo_dir = Path(__file__).resolve().parent.parent.parent | |
model_cards_dir = repo_dir / "model_cards" | |
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: | |
base, src_lang, tgt_lang = model_name.split("-") | |
model_card_dir = model_cards_dir / "facebook" / model_name | |
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang) | |