Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the TensorFlow CLIP model. """ | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
from importlib import import_module | |
import requests | |
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig | |
from transformers.testing_utils import require_tf, require_vision, slow | |
from transformers.utils import is_tf_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import TFCLIPModel, TFCLIPTextModel, TFCLIPVisionModel, TFSharedEmbeddings | |
from transformers.models.clip.modeling_tf_clip import TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import CLIPProcessor | |
class TFCLIPVisionModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, pixel_values | |
def get_config(self): | |
return CLIPVisionConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values): | |
model = TFCLIPVisionModel(config=config) | |
result = model(pixel_values, training=False) | |
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.image_size, self.image_size) | |
patch_size = (self.patch_size, self.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class TFCLIPVisionModelTest(TFModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (TFCLIPVisionModel,) if is_tf_available() else () | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFCLIPVisionModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
# CLIP does not use inputs_embeds | |
pass | |
def test_graph_mode_with_inputs_embeds(self): | |
# CLIP does not use inputs_embeds | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.call) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
# in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_len = num_patches + 1 | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
# CLIP has a different seq_length | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_length = num_patches + 1 | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_model_from_pretrained(self): | |
for model_name in TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFCLIPVisionModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_saved_model_creation_extended(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
if hasattr(config, "use_cache"): | |
config.use_cache = True | |
# in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_len = num_patches + 1 | |
for model_class in self.all_model_classes: | |
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
num_out = len(model(class_inputs_dict)) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=True) | |
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") | |
model = tf.keras.models.load_model(saved_model_dir) | |
outputs = model(class_inputs_dict) | |
output_hidden_states = outputs["hidden_states"] | |
output_attentions = outputs["attentions"] | |
# Check num outputs | |
self.assertEqual(len(outputs), num_out) | |
# Check num layers | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(output_hidden_states), expected_num_layers) | |
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) | |
# Check attention outputs | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_len = num_patches + 1 | |
self.assertListEqual( | |
list(output_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
# Check hidden states | |
self.assertListEqual( | |
list(output_hidden_states[0].shape[-2:]), | |
[seq_len, self.model_tester.hidden_size], | |
) | |
class TFCLIPTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
# make sure the first token has attention mask `1` to ensure that, after combining the causal mask, there | |
# is still at least one token being attended to for each batch. | |
# TODO: Change `random_attention_mask` in PT/TF/Flax common test file, after a discussion with the team. | |
input_mask = tf.concat( | |
[tf.ones_like(input_mask[:, :1], dtype=input_mask.dtype), input_mask[:, 1:]], axis=-1 | |
) | |
config = self.get_config() | |
return config, input_ids, input_mask | |
def get_config(self): | |
return CLIPTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask): | |
model = TFCLIPTextModel(config=config) | |
result = model(input_ids, attention_mask=input_mask, training=False) | |
result = model(input_ids, training=False) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFCLIPTextModelTest(TFModelTesterMixin, unittest.TestCase): | |
all_model_classes = (TFCLIPTextModel,) if is_tf_available() else () | |
test_pruning = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFCLIPTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_inputs_embeds(self): | |
# CLIP does not use inputs_embeds | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFCLIPTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_saved_model_creation_extended(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
if hasattr(config, "use_cache"): | |
config.use_cache = True | |
for model_class in self.all_model_classes: | |
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
num_out = len(model(class_inputs_dict)) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=True) | |
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") | |
model = tf.keras.models.load_model(saved_model_dir) | |
outputs = model(class_inputs_dict) | |
output_hidden_states = outputs["hidden_states"] | |
output_attentions = outputs["attentions"] | |
# Check number of outputs | |
self.assertEqual(len(outputs), num_out) | |
# Check number of layers | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
# Check hidden states | |
self.assertEqual(len(output_hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(output_hidden_states[0].shape[-2:]), | |
[self.model_tester.seq_length, self.model_tester.hidden_size], | |
) | |
# Check attention outputs | |
self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) | |
seq_length = self.model_tester.seq_length | |
key_length = getattr(self.model_tester, "key_length", seq_length) | |
self.assertListEqual( | |
list(output_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_length, key_length], | |
) | |
class TFCLIPModelTester: | |
def __init__(self, parent, is_training=True): | |
self.parent = parent | |
self.text_model_tester = TFCLIPTextModelTester(parent) | |
self.vision_model_tester = TFCLIPVisionModelTester(parent) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
config = self.get_config() | |
return config, input_ids, attention_mask, pixel_values | |
def get_config(self): | |
return CLIPConfig.from_text_vision_configs( | |
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
) | |
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
model = TFCLIPModel(config) | |
result = model(input_ids, pixel_values, attention_mask, training=False) | |
self.parent.assertEqual( | |
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
) | |
self.parent.assertEqual( | |
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask, pixel_values = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"return_loss": True, | |
} | |
return config, inputs_dict | |
class TFCLIPModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFCLIPModel,) if is_tf_available() else () | |
pipeline_model_mapping = {"feature-extraction": TFCLIPModel} if is_tf_available() else {} | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_attention_outputs = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFCLIPModelTester(self) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
# hidden_states are tested in individual model tests | |
def test_hidden_states_output(self): | |
pass | |
# input_embeds are tested in individual model tests | |
def test_inputs_embeds(self): | |
pass | |
# CLIPModel does not have input/output embeddings | |
def test_model_common_attributes(self): | |
pass | |
# overwrite from common since `TFCLIPModelTester` set `return_loss` to `True` and causes the preparation of | |
# `symbolic_inputs` failed. | |
def test_keras_save_load(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# remove `return_loss` to make code work | |
if self.__class__.__name__ == "TFCLIPModelTest": | |
inputs_dict.pop("return_loss", None) | |
tf_main_layer_classes = { | |
module_member | |
for model_class in self.all_model_classes | |
for module in (import_module(model_class.__module__),) | |
for module_member_name in dir(module) | |
if module_member_name.endswith("MainLayer") | |
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. | |
and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] | |
for module_member in (getattr(module, module_member_name),) | |
if isinstance(module_member, type) | |
and tf.keras.layers.Layer in module_member.__bases__ | |
and getattr(module_member, "_keras_serializable", False) | |
} | |
for main_layer_class in tf_main_layer_classes: | |
# T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter | |
if "T5" in main_layer_class.__name__: | |
# Take the same values than in TFT5ModelTester for this shared layer | |
shared = TFSharedEmbeddings(99, 32, name="shared") | |
config.use_cache = inputs_dict.pop("use_cache", None) | |
main_layer = main_layer_class(config, embed_tokens=shared) | |
else: | |
main_layer = main_layer_class(config) | |
symbolic_inputs = { | |
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() | |
} | |
model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) | |
outputs = model(inputs_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "keras_model.h5") | |
model.save(filepath) | |
if "T5" in main_layer_class.__name__: | |
model = tf.keras.models.load_model( | |
filepath, | |
custom_objects={ | |
main_layer_class.__name__: main_layer_class, | |
"TFSharedEmbeddings": TFSharedEmbeddings, | |
}, | |
) | |
else: | |
model = tf.keras.models.load_model( | |
filepath, custom_objects={main_layer_class.__name__: main_layer_class} | |
) | |
assert isinstance(model, tf.keras.Model) | |
after_outputs = model(inputs_dict) | |
self.assert_outputs_same(after_outputs, outputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFCLIPModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_saved_model_creation(self): | |
pass | |
def test_saved_model_creation_extended(self): | |
pass | |
def test_prepare_serving_output(self): | |
pass | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
im = Image.open(requests.get(url, stream=True).raw) | |
return im | |
class TFCLIPModelIntegrationTest(unittest.TestCase): | |
def test_inference(self): | |
model_name = "openai/clip-vit-base-patch32" | |
model = TFCLIPModel.from_pretrained(model_name) | |
processor = CLIPProcessor.from_pretrained(model_name) | |
image = prepare_img() | |
inputs = processor( | |
text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="tf" | |
) | |
outputs = model(**inputs, training=False) | |
# verify the logits | |
self.assertEqual( | |
outputs.logits_per_image.shape, | |
tf.TensorShape((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), | |
) | |
self.assertEqual( | |
outputs.logits_per_text.shape, | |
tf.TensorShape((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), | |
) | |
expected_logits = tf.constant([[24.5701, 19.3049]]) | |
tf.debugging.assert_near(outputs.logits_per_image, expected_logits, atol=1e-3) | |