multimodal / transformers /tests /pipelines /test_pipelines_token_classification.py
Li
add transformers
455a40f
raw
history blame
41.3 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import (
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
AutoModelForTokenClassification,
AutoTokenizer,
TokenClassificationPipeline,
pipeline,
)
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
@is_pipeline_test
class TokenClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]
def run_pipeline_test(self, token_classifier, _):
model = token_classifier.model
tokenizer = token_classifier.tokenizer
if not tokenizer.is_fast:
return # Slow tokenizers do not return offsets mappings, so this test will fail
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertEqual(
nested_simplify(outputs),
[
{
"entity": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"index": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
)
outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
self.assertIsInstance(outputs, list)
self.assertEqual(len(outputs), 2)
n = len(outputs[0])
m = len(outputs[1])
self.assertEqual(
nested_simplify(outputs),
[
[
{
"entity": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"index": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
[
{
"entity": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"index": ANY(int),
"word": ANY(str),
}
for i in range(m)
],
],
)
self.run_aggregation_strategy(model, tokenizer)
def run_aggregation_strategy(self, model, tokenizer):
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertEqual(
nested_simplify(outputs),
[
{
"entity_group": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
)
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertEqual(
nested_simplify(outputs),
[
{
"entity_group": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
)
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertEqual(
nested_simplify(outputs),
[
{
"entity_group": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
)
token_classifier = TokenClassificationPipeline(
model=model, tokenizer=tokenizer, aggregation_strategy="average"
)
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertEqual(
nested_simplify(outputs),
[
{
"entity_group": ANY(str),
"score": ANY(float),
"start": ANY(int),
"end": ANY(int),
"word": ANY(str),
}
for i in range(n)
],
)
with self.assertWarns(UserWarning):
token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
with self.assertWarns(UserWarning):
token_classifier = pipeline(
task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
)
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
@slow
@require_torch
def test_chunking(self):
NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
tokenizer.model_max_length = 10
stride = 5
sentence = (
"Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
"The company, based in New York City was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf."
)
token_classifier = TokenClassificationPipeline(
model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
],
)
token_classifier = TokenClassificationPipeline(
model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
],
)
token_classifier = TokenClassificationPipeline(
model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
],
)
token_classifier = TokenClassificationPipeline(
model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
],
)
@require_torch
def test_chunking_fast(self):
# Note: We cannot run the test on "conflicts" on the chunking.
# The problem is that the model is random, and thus the results do heavily
# depend on the chunking, so we cannot expect "abcd" and "bcd" to find
# the same entities. We defer to slow tests for this.
pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"
results = pipe(sentence, aggregation_strategy="first")
# This is what this random model gives on the full sentence
self.assertEqual(
nested_simplify(results),
[
# This is 2 actual tokens
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
],
)
# This will force the tokenizer to split after "city was".
pipe.tokenizer.model_max_length = 12
self.assertEqual(
pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
"[CLS] the company, based in new york city was [SEP]",
)
stride = 4
results = pipe(sentence, aggregation_strategy="first", stride=stride)
self.assertEqual(
nested_simplify(results),
[
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
# This is an extra entity found by this random model, but at least both original
# entities are there
{"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
],
)
@require_torch
@slow
def test_spanish_bert(self):
# https://github.com/huggingface/transformers/pull/4987
NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
{"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
{"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
{"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
],
)
@require_torch_gpu
@slow
def test_gpu(self):
sentence = "This is dummy sentence"
ner = pipeline(
"token-classification",
device=0,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
output = ner(sentence)
self.assertEqual(nested_simplify(output), [])
@require_torch
@slow
def test_dbmdz_english(self):
# Other sentence
NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
sentence = """Enzo works at the UN"""
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
{"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
{"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
],
)
@require_torch
@slow
def test_aggregation_strategy_byte_level_tokenizer(self):
sentence = "Groenlinks praat over Schiphol."
ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
self.assertEqual(
nested_simplify(ner(sentence)),
[
{"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
{"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
],
)
@require_torch
def test_aggregation_strategy_no_b_i_prefix(self):
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
# Just to understand scores indexes in this test
token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
example = [
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
"index": 1,
"is_subword": False,
"word": "En",
"start": 0,
"end": 2,
},
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
"index": 2,
"is_subword": True,
"word": "##zo",
"start": 2,
"end": 4,
},
{
# fmt: off
"scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
# fmt: on
"index": 7,
"word": "UN",
"is_subword": False,
"start": 11,
"end": 13,
},
]
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
[
{"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
{"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
{"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
[
{"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
@require_torch
def test_aggregation_strategy(self):
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
# Just to understand scores indexes in this test
self.assertEqual(
token_classifier.model.config.id2label,
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
)
example = [
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
"index": 1,
"is_subword": False,
"word": "En",
"start": 0,
"end": 2,
},
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
"index": 2,
"is_subword": True,
"word": "##zo",
"start": 2,
"end": 4,
},
{
# fmt: off
"scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
# fmt: on
"index": 7,
"word": "UN",
"is_subword": False,
"start": 11,
"end": 13,
},
]
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
[
{"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
{"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
{"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
@require_torch
def test_aggregation_strategy_example2(self):
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
# Just to understand scores indexes in this test
self.assertEqual(
token_classifier.model.config.id2label,
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
)
example = [
{
# Necessary for AVERAGE
"scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
"is_subword": False,
"index": 1,
"word": "Ra",
"start": 0,
"end": 2,
},
{
"scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
"is_subword": True,
"word": "##ma",
"start": 2,
"end": 4,
"index": 2,
},
{
# 4th score will have the higher average
# 4th score is B-PER for this model
# It's does not correspond to any of the subtokens.
"scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
"is_subword": True,
"word": "##zotti",
"start": 11,
"end": 13,
"index": 3,
},
]
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.NONE),
[
{"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
{"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
{"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
],
)
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.FIRST),
[{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
)
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.MAX),
[{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
[{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
)
@require_torch
@slow
def test_aggregation_strategy_offsets_with_leading_space(self):
sentence = "We're from New York"
model_name = "brandon25/deberta-base-finetuned-ner"
ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
self.assertEqual(
nested_simplify(ner(sentence)),
[
{"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
{"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
],
)
@require_torch
def test_gather_pre_entities(self):
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
sentence = "Hello there"
tokens = tokenizer(
sentence,
return_attention_mask=False,
return_tensors="pt",
truncation=True,
return_special_tokens_mask=True,
return_offsets_mapping=True,
)
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
input_ids = tokens["input_ids"].numpy()[0]
# First element in [CLS]
scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])
pre_entities = token_classifier.gather_pre_entities(
sentence,
input_ids,
scores,
offset_mapping,
special_tokens_mask,
aggregation_strategy=AggregationStrategy.NONE,
)
self.assertEqual(
nested_simplify(pre_entities),
[
{"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
{
"word": "there",
"scores": [0.8, 0.1, 0.1],
"index": 2,
"start": 6,
"end": 11,
"is_subword": False,
},
],
)
@require_torch
def test_word_heuristic_leading_space(self):
model_name = "hf-internal-testing/tiny-random-deberta-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
sentence = "I play the theremin"
tokens = tokenizer(
sentence,
return_attention_mask=False,
return_tensors="pt",
return_special_tokens_mask=True,
return_offsets_mapping=True,
)
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
input_ids = tokens["input_ids"].numpy()[0]
scores = np.array([[1, 0] for _ in input_ids]) # values irrelevant for heuristic
pre_entities = token_classifier.gather_pre_entities(
sentence,
input_ids,
scores,
offset_mapping,
special_tokens_mask,
aggregation_strategy=AggregationStrategy.FIRST,
)
# ensure expected tokenization and correct is_subword values
self.assertEqual(
[(entity["word"], entity["is_subword"]) for entity in pre_entities],
[("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)],
)
@require_tf
def test_tf_only(self):
model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version
# We test that if we don't specificy framework='tf', it gets detected automatically
token_classifier = pipeline(task="ner", model=model_name)
self.assertEqual(token_classifier.framework, "tf")
@require_tf
def test_small_model_tf(self):
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
outputs = token_classifier("This is a test !")
self.assertEqual(
nested_simplify(outputs),
[
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
],
)
@require_torch
def test_no_offset_tokenizer(self):
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
outputs = token_classifier("This is a test !")
self.assertEqual(
nested_simplify(outputs),
[
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
],
)
@require_torch
def test_small_model_pt(self):
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
outputs = token_classifier("This is a test !")
self.assertEqual(
nested_simplify(outputs),
[
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
],
)
token_classifier = pipeline(
task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
)
outputs = token_classifier("This is a test !")
self.assertEqual(
nested_simplify(outputs),
[],
)
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
# Overload offset_mapping
outputs = token_classifier(
"This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
)
self.assertEqual(
nested_simplify(outputs),
[
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
],
)
# Batch size does not affect outputs (attention_mask are required)
sentences = ["This is a test !", "Another test this is with longer sentence"]
outputs = token_classifier(sentences)
outputs_batched = token_classifier(sentences, batch_size=2)
# Batching does not make a difference in predictions
self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
self.assertEqual(
nested_simplify(outputs_batched),
[
[
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
],
[],
],
)
@require_torch
def test_pt_ignore_subwords_slow_tokenizer_raises(self):
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
with self.assertRaises(ValueError):
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
with self.assertRaises(ValueError):
pipeline(
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
)
with self.assertRaises(ValueError):
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
@slow
@require_torch
def test_simple(self):
token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
sentence2 = "This is a simple test"
output = token_classifier(sentence)
output_ = nested_simplify(output)
self.assertEqual(
output_,
[
{
"entity_group": "PER",
"score": 0.996,
"word": "Sarah Jessica Parker",
"start": 6,
"end": 26,
},
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
],
)
output = token_classifier([sentence, sentence2])
output_ = nested_simplify(output)
self.assertEqual(
output_,
[
[
{"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
],
[],
],
)
class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
def setUp(self):
self.args_parser = TokenClassificationArgumentHandler()
def test_simple(self):
string = "This is a simple input"
inputs, offset_mapping = self.args_parser(string)
self.assertEqual(inputs, [string])
self.assertEqual(offset_mapping, None)
inputs, offset_mapping = self.args_parser([string, string])
self.assertEqual(inputs, [string, string])
self.assertEqual(offset_mapping, None)
inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
self.assertEqual(inputs, [string])
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])
inputs, offset_mapping = self.args_parser(
[string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
)
self.assertEqual(inputs, [string, string])
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
def test_errors(self):
string = "This is a simple input"
# 2 sentences, 1 offset_mapping, args
with self.assertRaises(TypeError):
self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])
# 2 sentences, 1 offset_mapping, args
with self.assertRaises(TypeError):
self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])
# 2 sentences, 1 offset_mapping, input_list
with self.assertRaises(ValueError):
self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])
# 2 sentences, 1 offset_mapping, input_list
with self.assertRaises(ValueError):
self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])
# 1 sentences, 2 offset_mapping
with self.assertRaises(ValueError):
self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
# 0 sentences, 1 offset_mapping
with self.assertRaises(TypeError):
self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])