Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available | |
from transformers.pipelines import pipeline | |
from transformers.testing_utils import ( | |
is_pipeline_test, | |
nested_simplify, | |
require_tf, | |
require_torch, | |
require_vision, | |
slow, | |
) | |
from .test_pipelines_common import ANY | |
if is_vision_available(): | |
from PIL import Image | |
else: | |
class Image: | |
def open(*args, **kwargs): | |
pass | |
class VisualQuestionAnsweringPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa") | |
examples = [ | |
{ | |
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), | |
"question": "How many cats are there?", | |
}, | |
{ | |
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png", | |
"question": "How many cats are there?", | |
}, | |
] | |
return vqa_pipeline, examples | |
def run_pipeline_test(self, vqa_pipeline, examples): | |
outputs = vqa_pipeline(examples, top_k=1) | |
self.assertEqual( | |
outputs, | |
[ | |
[{"score": ANY(float), "answer": ANY(str)}], | |
[{"score": ANY(float), "answer": ANY(str)}], | |
], | |
) | |
def test_small_model_pt(self): | |
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa") | |
image = "./tests/fixtures/tests_samples/COCO/000000039769.png" | |
question = "How many cats are there?" | |
outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2) | |
self.assertEqual( | |
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}] | |
) | |
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual( | |
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}] | |
) | |
def test_large_model_pt(self): | |
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") | |
image = "./tests/fixtures/tests_samples/COCO/000000039769.png" | |
question = "How many cats are there?" | |
outputs = vqa_pipeline(image=image, question=question, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] | |
) | |
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] | |
) | |
outputs = vqa_pipeline( | |
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2, | |
) | |
def test_small_model_tf(self): | |
pass | |