multimodal / transformers /tests /repo_utils /test_check_copies.py
Li
add transformers
455a40f
raw
history blame
11.4 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
REFERENCE_CODE = """ def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
"""
class CopyCheckTester(unittest.TestCase):
def setUp(self):
self.transformer_dir = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir, "models/bert/"))
check_copies.TRANSFORMER_PATH = self.transformer_dir
shutil.copy(
os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"),
os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"),
)
def tearDown(self):
check_copies.TRANSFORMER_PATH = "src/transformers"
shutil.rmtree(self.transformer_dir)
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None):
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119)
code = black.format_str(code, mode=mode)
fname = os.path.join(self.transformer_dir, "new_code.py")
with open(fname, "w", newline="\n") as f:
f.write(code)
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0)
else:
check_copies.is_copy_consistent(f.name, overwrite=True)
with open(fname, "r") as f:
self.assertTrue(f.read(), expected)
def test_find_code_in_transformers(self):
code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead")
self.assertEqual(code, REFERENCE_CODE)
def test_is_copy_consistent(self):
# Base copy consistency
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
"BertLMPredictionHead",
REFERENCE_CODE + "\n",
)
# With no empty line at the end
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead",
"BertLMPredictionHead",
REFERENCE_CODE,
)
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
"TestModelLMPredictionHead",
re.sub("Bert", "TestModel", REFERENCE_CODE),
)
# Copy consistency with a really long name
long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}",
f"{long_class_name}LMPredictionHead",
re.sub("Bert", long_class_name, REFERENCE_CODE),
)
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel",
"TestModelLMPredictionHead",
REFERENCE_CODE,
overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE),
)
def test_convert_to_localized_md(self):
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"]
md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"
" Luong, Quoc V. Le, Christopher D. Manning."
)
localized_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
converted_md_list_sample = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"
" Christopher D. Manning 发布。\n"
)
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
md_list, localized_md_list, localized_readme["format_model_list"]
)
self.assertFalse(num_models_equal)
self.assertEqual(converted_md_list, converted_md_list_sample)
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
md_list, converted_md_list, localized_readme["format_model_list"]
)
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(num_models_equal)
link_changed_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."
)
link_unchanged_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
converted_md_list_sample = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
num_models_equal, converted_md_list = check_copies.convert_to_localized_md(
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"]
)
# Check if the model link is synchronized.
self.assertEqual(converted_md_list, converted_md_list_sample)