Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 HuggingFace Inc.. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
isort:skip_file | |
""" | |
import os | |
import pickle | |
import tempfile | |
import unittest | |
from typing import Callable, Optional | |
import numpy as np | |
from transformers import ( | |
BatchEncoding, | |
BertTokenizer, | |
BertTokenizerFast, | |
PreTrainedTokenizer, | |
PreTrainedTokenizerFast, | |
TensorType, | |
TokenSpan, | |
is_tokenizers_available, | |
) | |
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer | |
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow | |
if is_tokenizers_available(): | |
from tokenizers import Tokenizer | |
from tokenizers.models import WordPiece | |
class TokenizerUtilsTest(unittest.TestCase): | |
def check_tokenizer_from_pretrained(self, tokenizer_class): | |
s3_models = list(tokenizer_class.max_model_input_sizes.keys()) | |
for model_name in s3_models[:1]: | |
tokenizer = tokenizer_class.from_pretrained(model_name) | |
self.assertIsNotNone(tokenizer) | |
self.assertIsInstance(tokenizer, tokenizer_class) | |
self.assertIsInstance(tokenizer, PreTrainedTokenizer) | |
for special_tok in tokenizer.all_special_tokens: | |
self.assertIsInstance(special_tok, str) | |
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok) | |
self.assertIsInstance(special_tok_id, int) | |
def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None): | |
batch_encoding_str = pickle.dumps(be_original) | |
self.assertIsNotNone(batch_encoding_str) | |
be_restored = pickle.loads(batch_encoding_str) | |
# Ensure is_fast is correctly restored | |
self.assertEqual(be_restored.is_fast, be_original.is_fast) | |
# Ensure encodings are potentially correctly restored | |
if be_original.is_fast: | |
self.assertIsNotNone(be_restored.encodings) | |
else: | |
self.assertIsNone(be_restored.encodings) | |
# Ensure the keys are the same | |
for original_v, restored_v in zip(be_original.values(), be_restored.values()): | |
if equal_op: | |
self.assertTrue(equal_op(restored_v, original_v)) | |
else: | |
self.assertEqual(restored_v, original_v) | |
def test_pretrained_tokenizers(self): | |
self.check_tokenizer_from_pretrained(GPT2Tokenizer) | |
def test_tensor_type_from_str(self): | |
self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW) | |
self.assertEqual(TensorType("pt"), TensorType.PYTORCH) | |
self.assertEqual(TensorType("np"), TensorType.NUMPY) | |
def test_batch_encoding_pickle(self): | |
import numpy as np | |
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased") | |
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased") | |
# Python no tensor | |
with self.subTest("BatchEncoding (Python, return_tensors=None)"): | |
self.assert_dump_and_restore(tokenizer_p("Small example to encode")) | |
with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"): | |
self.assert_dump_and_restore( | |
tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal | |
) | |
with self.subTest("BatchEncoding (Rust, return_tensors=None)"): | |
self.assert_dump_and_restore(tokenizer_r("Small example to encode")) | |
with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"): | |
self.assert_dump_and_restore( | |
tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal | |
) | |
def test_batch_encoding_pickle_tf(self): | |
import tensorflow as tf | |
def tf_array_equals(t1, t2): | |
return tf.reduce_all(tf.equal(t1, t2)) | |
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased") | |
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased") | |
with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"): | |
self.assert_dump_and_restore( | |
tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals | |
) | |
with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"): | |
self.assert_dump_and_restore( | |
tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals | |
) | |
def test_batch_encoding_pickle_pt(self): | |
import torch | |
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased") | |
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased") | |
with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"): | |
self.assert_dump_and_restore( | |
tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal | |
) | |
with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"): | |
self.assert_dump_and_restore( | |
tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal | |
) | |
def test_batch_encoding_is_fast(self): | |
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased") | |
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased") | |
with self.subTest("Python Tokenizer"): | |
self.assertFalse(tokenizer_p("Small example to_encode").is_fast) | |
with self.subTest("Rust Tokenizer"): | |
self.assertTrue(tokenizer_r("Small example to_encode").is_fast) | |
def test_batch_encoding_word_to_tokens(self): | |
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased") | |
encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True) | |
self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2)) | |
self.assertEqual(encoded.word_to_tokens(1), None) | |
self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3)) | |
def test_batch_encoding_with_labels(self): | |
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="np") | |
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
# test converting the converted | |
with CaptureStderr() as cs: | |
tensor_batch = batch.convert_to_tensors(tensor_type="np") | |
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True) | |
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
def test_batch_encoding_with_labels_pt(self): | |
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="pt") | |
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
# test converting the converted | |
with CaptureStderr() as cs: | |
tensor_batch = batch.convert_to_tensors(tensor_type="pt") | |
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True) | |
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
def test_batch_encoding_with_labels_tf(self): | |
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="tf") | |
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
# test converting the converted | |
with CaptureStderr() as cs: | |
tensor_batch = batch.convert_to_tensors(tensor_type="tf") | |
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True) | |
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
def test_batch_encoding_with_labels_jax(self): | |
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="jax") | |
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (2,)) | |
# test converting the converted | |
with CaptureStderr() as cs: | |
tensor_batch = batch.convert_to_tensors(tensor_type="jax") | |
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") | |
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) | |
tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True) | |
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) | |
self.assertEqual(tensor_batch["labels"].shape, (1,)) | |
def test_padding_accepts_tensors(self): | |
features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}] | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
batch = tokenizer.pad(features, padding=True) | |
self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) | |
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
batch = tokenizer.pad(features, padding=True, return_tensors="np") | |
self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) | |
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
def test_padding_accepts_tensors_pt(self): | |
import torch | |
features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}] | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
batch = tokenizer.pad(features, padding=True) | |
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) | |
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
batch = tokenizer.pad(features, padding=True, return_tensors="pt") | |
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) | |
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
def test_padding_accepts_tensors_tf(self): | |
import tensorflow as tf | |
features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}] | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
batch = tokenizer.pad(features, padding=True) | |
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) | |
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
batch = tokenizer.pad(features, padding=True, return_tensors="tf") | |
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) | |
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) | |
def test_instantiation_from_tokenizers(self): | |
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) | |
PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer) | |
def test_instantiation_from_tokenizers_json_file(self): | |
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json")) | |
PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json")) | |