Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
+
import emoji
|
6 |
+
import nltk
|
7 |
+
import lxml
|
8 |
+
import os
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
from markdown import markdown
|
11 |
+
from nltk.corpus import stopwords
|
12 |
+
from datasets import load_dataset
|
13 |
+
from sentence_transformers import SentenceTransformer, util
|
14 |
+
from retry import retry
|
15 |
+
|
16 |
+
# 确保已下载 nltk 的停用词
|
17 |
+
nltk.download('stopwords')
|
18 |
+
|
19 |
+
# 从环境变量中获取 hf_token
|
20 |
+
hf_token = os.getenv('HF_TOKEN')
|
21 |
+
|
22 |
+
model_id = "BAAI/bge-large-en-v1.5"
|
23 |
+
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
24 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
25 |
+
|
26 |
+
@retry(tries=3, delay=10)
|
27 |
+
def query(texts):
|
28 |
+
response = requests.post(api_url, headers=headers, json={"inputs": texts})
|
29 |
+
if response.status_code == 200:
|
30 |
+
result = response.json()
|
31 |
+
if isinstance(result, list):
|
32 |
+
return result
|
33 |
+
elif 'error' in result:
|
34 |
+
raise RuntimeError("Error from Hugging Face API: " + result['error'])
|
35 |
+
else:
|
36 |
+
raise RuntimeError("Failed to get response from Hugging Face API, status code: " + str(response.status_code))
|
37 |
+
|
38 |
+
# 加载嵌入向量数据集
|
39 |
+
faqs_embeddings_dataset = load_dataset('chenglu/hf-blogs-baai-embeddings')
|
40 |
+
df = faqs_embeddings_dataset["train"].to_pandas()
|
41 |
+
embeddings_array = df.T.to_numpy()
|
42 |
+
dataset_embeddings = torch.from_numpy(embeddings_array).to(torch.float)
|
43 |
+
|
44 |
+
# 加载原始数据集
|
45 |
+
original_dataset = load_dataset("chenglu/hf-blogs")['train']
|
46 |
+
|
47 |
+
# 定义英语停用词集
|
48 |
+
stop_words = set(stopwords.words('english'))
|
49 |
+
|
50 |
+
def remove_stopwords(text):
|
51 |
+
return ' '.join([word for word in text.split() if word.lower() not in stop_words])
|
52 |
+
|
53 |
+
def clean_content(content):
|
54 |
+
content = re.sub(r"(```.*?```|`.*?`)", "", content, flags=re.DOTALL)
|
55 |
+
content = BeautifulSoup(content, "html.parser").get_text()
|
56 |
+
content = emoji.replace_emoji(content, replace='')
|
57 |
+
content = re.sub(r"[^a-zA-Z\s]", "", content)
|
58 |
+
content = re.sub(r"http\S+|www\S+|https\S+", '', content, flags=re.MULTILINE)
|
59 |
+
content = markdown(content)
|
60 |
+
content = ''.join(BeautifulSoup(content, 'lxml').findAll(text=True))
|
61 |
+
content = re.sub(r'\s+', ' ', content)
|
62 |
+
return content
|
63 |
+
|
64 |
+
def get_tags_for_local(dataset, local_value):
|
65 |
+
entry = next((item for item in dataset if item['local'] == local_value), None)
|
66 |
+
if entry:
|
67 |
+
return entry['tags']
|
68 |
+
else:
|
69 |
+
return None
|
70 |
+
|
71 |
+
def gradio_query_interface(input_text):
|
72 |
+
cleaned_text = clean_content(input_text)
|
73 |
+
no_stopwords_text = remove_stopwords(cleaned_text)
|
74 |
+
new_embedding = query(no_stopwords_text)
|
75 |
+
query_embeddings = torch.FloatTensor(new_embedding)
|
76 |
+
hits = util.semantic_search(query_embeddings, dataset_embeddings, top_k=5)
|
77 |
+
if all(hit['score'] < 0.6 for hit in hits[0]):
|
78 |
+
return "Content Not related"
|
79 |
+
else:
|
80 |
+
highest_score_result = max(hits[0], key=lambda x: x['score'])
|
81 |
+
highest_score_corpus_id = highest_score_result['corpus_id']
|
82 |
+
local = df.columns[highest_score_corpus_id]
|
83 |
+
recommended_tags = get_tags_for_local(original_dataset, local)
|
84 |
+
return f"Recommended category tags: {recommended_tags}"
|
85 |
+
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=gradio_query_interface,
|
88 |
+
inputs="text",
|
89 |
+
outputs="label"
|
90 |
+
)
|
91 |
+
|
92 |
+
iface.launch()
|