File size: 13,958 Bytes
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c86f09
b57c333
 
4dff355
b57c333
 
 
0c86f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57c333
 
 
afd7574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd7574
b57c333
afd7574
 
 
 
 
 
 
 
 
 
b57c333
 
 
acac4ca
b57c333
7e0c74d
b57c333
acac4ca
b57c333
acac4ca
b57c333
 
 
 
 
 
 
 
 
 
 
 
17a220f
 
 
b57c333
 
afd7574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57c333
17a220f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57c333
 
 
 
 
 
 
 
 
 
 
 
0c86f09
 
b57c333
 
4dff355
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd7574
 
b57c333
 
4dff355
b57c333
4dff355
b57c333
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr

# from inference import InferencePipeline
# from FateZero import test_fatezero
from inference_fatezero import merge_config_then_run

# class InferenceUtil:
#     def __init__(self, hf_token: str | None):
#         self.hf_token = hf_token

#     def load_model_info(self, model_id: str) -> tuple[str, str]:
#         # todo FIXME
#         try:
#             card = InferencePipeline.get_model_card(model_id, self.hf_token)
#         except Exception:
#             return '', ''
#         base_model = getattr(card.data, 'base_model', '')
#         training_prompt = getattr(card.data, 'training_prompt', '')
#         return base_model, training_prompt


# TITLE = '# [FateZero](http://fate-zero-edit.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
# pipe = InferencePipeline(HF_TOKEN)
pipe = merge_config_then_run()
# app = InferenceUtil(HF_TOKEN)

with gr.Blocks(css='style.css') as demo:
    # gr.Markdown(TITLE)
    gr.HTML(
    """
    <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
    <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
        FateZero : Fusing Attentions for Zero-shot Text-based Video Editing
    </h1>
    <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
            <a href="https://chenyangqiqi.github.io/">Chenyang Qi</a>
            <a href="https://vinthony.github.io/academic/">Xiaodong Cun</a> , <a href="https://yzhang2016.github.io/">Yong Zhang</a>, 
            <a href="https://chenyanglei.github.io">Chenyang Lei</a>, <a href="https://xinntao.github.io/"> Xintao Wang </a>,
            <a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN">Ying Shan</a>,
            <a href="http://cqf.io">Qifeng Chen</a>
    </h2>

    <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
                  <span class="link-block">
                    [<a href="https://arxiv.org/abs/2303.09535" target="_blank"
                    class="external-link ">
                    <span class="icon">
                      <i class="ai ai-arxiv"></i>
                    </span>
                    <span>arXiv</span>
                  </a>]
                </span>

                  <!-- Github link -->
                  <span class="link-block">
                    [<a href="https://github.com/ChenyangQiQi/FateZero" target="_blank"
                    class="external-link ">
                    <span class="icon">
                      <i class="fab fa-github"></i>
                    </span>
                    <span>Code</span>
                  </a>]
                </span>

                <!-- Github link -->
                  <span class="link-block">
                    [<a href="http://fate-zero-edit.github.io/" target="_blank"
                    class="external-link ">
                    <span class="icon">
                      <i class="fab fa-github"></i>
                    </span>
                    <span>Homepage</span>
                  </a>]
                </span>

                <!-- Github link -->
                <span class="link-block">
                  [<a href="https://hkustconnect-my.sharepoint.com/:v:/g/personal/cqiaa_connect_ust_hk/EXKDI_nahEhKtiYPvvyU9SkBDTG2W4G1AZ_vkC7ekh3ENw?e=ficp9t" target="_blank"
                  class="external-link ">
                  <span class="icon">
                    <i class="fab fa-youtube"></i>
                  </span>
                  <span>Video</span>
                </a>]
              </span>
    </h2>
    <h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
        FateZero is a first zero-shot framework for text-driven video editing via pretrained diffusion models without training.
    </h2>
    </div>
    """)


    gr.HTML("""
    <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
    <br/>
    <a href="https://huggingface.co/spaces/chenyangqi/FateZero?duplicate=true">
    <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
    </p>""")

    with gr.Row():
        with gr.Column():
            with gr.Accordion('Input Video', open=True):
                user_input_video = gr.File(label='Input Source Video')
                with gr.Accordion('Temporal Crop offset and Sampling Stride', open=False):
                    n_sample_frame = gr.Slider(label='Number of Frames in Video',
                                        minimum=0,
                                        maximum=32,
                                        step=1,
                                        value=8)
                    stride = gr.Slider(label='Temporal sampling stride in Video',
                                            minimum=0,
                                            maximum=20,
                                            step=1,
                                            value=1)
                    start_sample_frame = gr.Number(label='Start frame in the video',
                              value=0,
                              precision=0)

                with gr.Accordion('Spatial Crop offset', open=False):
                    left_crop = gr.Number(label='Left crop',
                              value=0,
                              precision=0)
                    right_crop = gr.Number(label='Right crop',
                              value=0,
                              precision=0)
                    top_crop = gr.Number(label='Top crop',
                              value=0,
                              precision=0)
                    bottom_crop = gr.Number(label='Bottom crop',
                              value=0,
                              precision=0)
                    offset_list = [
                         left_crop,
                         right_crop,
                         top_crop,
                         bottom_crop,
                    ]
                
                ImageSequenceDataset_list = [
                   start_sample_frame,
                   n_sample_frame,
                   stride
                ] + offset_list
                
                
                data_path = gr.Dropdown(
                label='provided data path',
                choices=[
                    'FateZero/data/teaser_car-turn',
                    'FateZero/data/style/sunflower',
                    # add shape editing ckpt here
                ],
                value='FateZero/data/teaser_car-turn')
                model_id = gr.Dropdown(
                    label='Model ID',
                    choices=[
                        'CompVis/stable-diffusion-v1-4',
                        # add shape editing ckpt here
                    ],
                    value='CompVis/stable-diffusion-v1-4')
                # with gr.Accordion(
                #         label=
                #         'Model info (Base model and prompt used for training)',
                #         open=False):
                #     with gr.Row():
                #         base_model_used_for_training = gr.Text(
                #             label='Base model', interactive=False)
                #         prompt_used_for_training = gr.Text(
                #             label='Training prompt', interactive=False)
            


            with gr.Accordion('Text Prompt', open=True):

                source_prompt = gr.Textbox(label='Source Prompt',
                                    info='A good prompt describes each frame and most objects in video. Especially, it has the object or attribute that we want to edit or preserve.',
                                    max_lines=1,
                                    placeholder='Example: "a silver jeep driving down a curvy road in the countryside"',
                                    value='a silver jeep driving down a curvy road in the countryside')
                target_prompt = gr.Textbox(label='Target Prompt',
                                    info='A reasonable composition of video may achieve better results(e.g., "sunflower" video with "Van Gogh" prompt is better than "sunflower" with "Monet")',
                                    max_lines=1,
                                    placeholder='Example: "watercolor painting of a silver jeep driving down a curvy road in the countryside"',
                                    value='watercolor painting of a silver jeep driving down a curvy road in the countryside')



            with gr.Accordion('DDIM Parameters', open=True):
                num_steps = gr.Slider(label='Number of Steps',
                                      info='larger value has better editing capacity, but takes more time and memory',
                                      minimum=0,
                                      maximum=50,
                                      step=1,
                                      value=10)
                guidance_scale = gr.Slider(label='CFG Scale',
                                           minimum=0,
                                           maximum=50,
                                           step=0.1,
                                           value=7.5)

            run_button = gr.Button('Generate')

            # gr.Markdown('''
            # - It takes a few minutes to download model first.
            # - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
            # ''')
            # gr.Markdown('''
            # todo
            # ''')
        with gr.Column():
            result = gr.Video(label='Result')
            result.style(height=512, width=512)
            with gr.Accordion('FateZero Parameters for attention fusing', open=True):
                cross_replace_steps = gr.Slider(label='cross-attention replace steps',
                                info='More steps, replace more cross attention to preserve semantic layout.',
                                minimum=0.0,
                                maximum=1.0,
                                step=0.1,
                                value=0.7)
                
                self_replace_steps = gr.Slider(label='self-attention replace steps',
                                info='More steps, replace more spatial-temporal self-attention to preserve geometry and motion.',
                                minimum=0.0,
                                maximum=1.0,
                                step=0.1,
                                value=0.7)
                
                enhance_words = gr.Textbox(label='words to be enhanced',
                                    info='Amplify the target-words cross attention',
                                    max_lines=1,
                                    placeholder='Example: "watercolor "',
                                    value='watercolor')

                enhance_words_value = gr.Slider(label='Amplify the target cross-attention',
                                info='larger value, more elements of target words',
                                minimum=0.0,
                                maximum=20.0,
                                step=1,
                                value=10)
    with gr.Row():
        from example import style_example
        examples = style_example
        # examples = [
        #     [
        #         'CompVis/stable-diffusion-v1-4',
        #         'FateZero/data/teaser_car-turn',
        #         'a silver jeep driving down a curvy road in the countryside',
        #         'watercolor painting of a silver jeep driving down a curvy road in the countryside',
        #         0.8, 
        #         0.8,
        #         "watercolor",
        #         10,
        #         10,
        #         7.5,
        #     ],
        #     [
        #         'CompVis/stable-diffusion-v1-4',
        #         'FateZero/data/style/sunflower',
        #         'a yellow sunflower',
        #         'van gogh style painting of a yellow sunflower',
        #         0.5,
        #         0.5,
        #         'van gogh',
        #         10,
        #         10,
        #         7.5,
        #     ],
        # ]
        gr.Examples(examples=examples,
                    inputs=[
                        model_id,
                        data_path,
                        source_prompt,
                        target_prompt,
                        cross_replace_steps,
                        self_replace_steps,
                        enhance_words,
                        enhance_words_value,
                        num_steps,
                        guidance_scale,
                        user_input_video,
                        *ImageSequenceDataset_list
                    ],
                    outputs=result,
                    fn=pipe.run,
                    cache_examples=os.getenv('SYSTEM') == 'spaces')

    # model_id.change(fn=app.load_model_info,
    #                 inputs=model_id,
    #                 outputs=[
    #                     base_model_used_for_training,
    #                     prompt_used_for_training,
    #                 ])
    inputs = [
            model_id,
            data_path,
            source_prompt,
            target_prompt,
            cross_replace_steps,
            self_replace_steps,
            enhance_words,
            enhance_words_value,
            num_steps,
            guidance_scale,
            user_input_video,
            *ImageSequenceDataset_list
    ]
    # prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
    target_prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
    # run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
    run_button.click(fn=pipe.run, inputs=inputs, outputs=result)

demo.queue().launch()