Spaces:
Runtime error
Runtime error
File size: 11,643 Bytes
b57c333 0c86f09 b57c333 4dff355 b57c333 0c86f09 43ca864 0c86f09 aad6349 0c86f09 aad6349 0c86f09 aad6349 a8b3fe4 0c86f09 a8b3fe4 0c86f09 b57c333 afd7574 a8b3fe4 afd7574 a8b3fe4 afd7574 a8b3fe4 afd7574 b57c333 afd7574 b57c333 afd7574 b57c333 a8b3fe4 b57c333 a8b3fe4 afd7574 a8b3fe4 afd7574 a8b3fe4 afd7574 a8b3fe4 afd7574 a8b3fe4 afd7574 a8b3fe4 6024290 a8b3fe4 c261533 a8b3fe4 b57c333 17a220f a8b3fe4 b57c333 a8b3fe4 b57c333 0c86f09 b57c333 4dff355 f88c240 43ca864 b57c333 a8b3fe4 b57c333 afd7574 b57c333 4dff355 b57c333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from inference_fatezero import merge_config_then_run
# TITLE = '# [FateZero](http://fate-zero-edit.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
# pipe = InferencePipeline(HF_TOKEN)
pipe = merge_config_then_run()
# app = InferenceUtil(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
# gr.Markdown(TITLE)
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
FateZero : Fusing Attentions for Zero-shot Text-based Video Editing
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://chenyangqiqi.github.io/">Chenyang Qi</a>
<a href="https://vinthony.github.io/academic/">Xiaodong Cun</a> , <a href="https://yzhang2016.github.io/">Yong Zhang</a>,
<a href="https://chenyanglei.github.io">Chenyang Lei</a>, <a href="https://xinntao.github.io/"> Xintao Wang </a>,
<a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN">Ying Shan</a>,
<a href="http://cqf.io">Qifeng Chen</a>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<span class="link-block">
[<a href="https://arxiv.org/abs/2303.09535" target="_blank"
class="external-link ">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>]
</span>
<!-- Github link -->
<span class="link-block">
[<a href="https://github.com/ChenyangQiQi/FateZero" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>]
</span>
<!-- Github link -->
<span class="link-block">
[<a href="http://fate-zero-edit.github.io/" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Homepage</span>
</a>]
</span>
<!-- Github link -->
<span class="link-block">
[<a href="https://hkustconnect-my.sharepoint.com/:v:/g/personal/cqiaa_connect_ust_hk/EXKDI_nahEhKtiYPvvyU9SkBDTG2W4G1AZ_vkC7ekh3ENw?e=ficp9t" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>]
</span>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
TL;DR: FateZero is the first zero-shot framework for text-driven video editing via pretrained diffusion models without training.
</h2>
</div>
""")
gr.HTML("""
<p>We provide an <a href="https://github.com/ChenyangQiQi/FateZero/blob/main/docs/EditingGuidance.md"> Editing Guidance </a> to help users to choose hyperparameters when editing in-the-wild video.
<p>Note that due to the limits of memory and computing resources on hugging-face, the results here are only toy examples and take longer to edit.
<p>You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue.
<br/>
<a href="https://huggingface.co/spaces/chenyangqi/FateZero?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p>Alternatively, try our GitHub <a href=https://github.com/ChenyangQiQi/FateZero> code </a> on your GPU.
</p>""")
with gr.Row():
with gr.Column():
with gr.Accordion('Input Video', open=True):
# user_input_video = gr.File(label='Input Source Video')
user_input_video = gr.Video(label='Input Source Video', source='upload', type='numpy', format="mp4", visible=True).style(height="auto")
with gr.Accordion('Temporal Crop offset and Sampling Stride', open=False):
n_sample_frame = gr.Slider(label='Number of Frames',
minimum=0,
maximum=32,
step=1,
value=8)
stride = gr.Slider(label='Temporal stride',
minimum=0,
maximum=20,
step=1,
value=1)
start_sample_frame = gr.Number(label='Start frame in the video',
value=0,
precision=0)
with gr.Accordion('Spatial Crop offset', open=False):
left_crop = gr.Number(label='Left crop',
value=0,
precision=0)
right_crop = gr.Number(label='Right crop',
value=0,
precision=0)
top_crop = gr.Number(label='Top crop',
value=0,
precision=0)
bottom_crop = gr.Number(label='Bottom crop',
value=0,
precision=0)
offset_list = [
left_crop,
right_crop,
top_crop,
bottom_crop,
]
ImageSequenceDataset_list = [
start_sample_frame,
n_sample_frame,
stride
] + offset_list
model_id = gr.Dropdown(
label='Model ID',
choices=[
'CompVis/stable-diffusion-v1-4',
# add shape editing ckpt here
],
value='CompVis/stable-diffusion-v1-4')
with gr.Accordion('Text Prompt', open=True):
source_prompt = gr.Textbox(label='Source Prompt',
info='A good prompt describes each frame and most objects in video. Especially, it has the object or attribute that we want to edit or preserve.',
max_lines=1,
placeholder='Example: "a silver jeep driving down a curvy road in the countryside"',
value='a silver jeep driving down a curvy road in the countryside')
target_prompt = gr.Textbox(label='Target Prompt',
info='A reasonable composition of video may achieve better results(e.g., "sunflower" video with "Van Gogh" prompt is better than "sunflower" with "Monet")',
max_lines=1,
placeholder='Example: "watercolor painting of a silver jeep driving down a curvy road in the countryside"',
value='watercolor painting of a silver jeep driving down a curvy road in the countryside')
run_button = gr.Button('Generate')
with gr.Column():
result = gr.Video(label='Result')
# result.style(height=512, width=512)
with gr.Accordion('FateZero Parameters for attention fusing', open=True):
cross_replace_steps = gr.Slider(label='Cross-att replace steps',
info='More steps, replace more cross attention to preserve semantic layout.',
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7)
self_replace_steps = gr.Slider(label='Self-att replace steps',
info='More steps, replace more spatial-temporal self-attention to preserve geometry and motion.',
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7)
enhance_words = gr.Textbox(label='Enhanced words',
info='Amplify the target-words cross attention',
max_lines=1,
placeholder='Example: "watercolor "',
value='watercolor')
enhance_words_value = gr.Slider(label='Target cross-att amplification',
info='larger value, more elements of target words',
minimum=0.0,
maximum=20.0,
step=1,
value=10)
with gr.Accordion('DDIM Parameters', open=True):
num_steps = gr.Slider(label='Number of Steps',
info='larger value has better editing capacity, but takes more time and memory. (50 steps may produces memory errors)',
minimum=0,
maximum=30,
step=1,
value=10)
guidance_scale = gr.Slider(label='CFG Scale',
minimum=0,
maximum=50,
step=0.1,
value=7.5)
with gr.Row():
from example import style_example
examples = style_example
gr.Examples(examples=examples,
inputs=[
model_id,
user_input_video,
source_prompt,
target_prompt,
cross_replace_steps,
self_replace_steps,
enhance_words,
enhance_words_value,
num_steps,
guidance_scale,
user_input_video,
*ImageSequenceDataset_list
],
outputs=result,
fn=pipe.run,
cache_examples=True,
# cache_examples=os.getenv('SYSTEM') == 'spaces'
)
inputs = [
model_id,
user_input_video,
source_prompt,
target_prompt,
cross_replace_steps,
self_replace_steps,
enhance_words,
enhance_words_value,
num_steps,
guidance_scale,
user_input_video,
*ImageSequenceDataset_list
]
target_prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
demo.queue().launch()
|