Spaces:
Runtime error
Runtime error
chenyangqi
commited on
Commit
·
8214cae
1
Parent(s):
0c86f09
rm tune-a-video, add default config for video crop
Browse files- Dockerfile +0 -1
- FateZero/test_fatezero.py +1 -1
- Tune-A-Video/README.md +0 -119
- Tune-A-Video/configs/man-surfing.yaml +0 -39
- Tune-A-Video/configs/mr-potato-head.yaml +0 -39
- Tune-A-Video/data/man-surfing.mp4 +0 -0
- Tune-A-Video/requirements.txt +0 -13
- Tune-A-Video/train_tuneavideo.py +0 -352
- Tune-A-Video/tuneavideo/data/dataset.py +0 -44
- Tune-A-Video/tuneavideo/models/__pycache__/attention.cpython-38.pyc +0 -0
- Tune-A-Video/tuneavideo/models/__pycache__/resnet.cpython-38.pyc +0 -0
- Tune-A-Video/tuneavideo/models/__pycache__/unet.cpython-38.pyc +0 -0
- Tune-A-Video/tuneavideo/models/__pycache__/unet_blocks.cpython-38.pyc +0 -0
- Tune-A-Video/tuneavideo/models/attention.py +0 -328
- Tune-A-Video/tuneavideo/models/resnet.py +0 -209
- Tune-A-Video/tuneavideo/models/unet.py +0 -450
- Tune-A-Video/tuneavideo/models/unet_blocks.py +0 -588
- Tune-A-Video/tuneavideo/pipelines/__pycache__/pipeline_tuneavideo.cpython-38.pyc +0 -0
- Tune-A-Video/tuneavideo/pipelines/pipeline_tuneavideo.py +0 -407
- Tune-A-Video/tuneavideo/util.py +0 -23
- inference_fatezero.py +8 -8
- patch +0 -15
Dockerfile
CHANGED
@@ -53,7 +53,6 @@ COPY --chown=1000 . ${HOME}/app
|
|
53 |
RUN ls -a
|
54 |
RUN cd ./FateZero/ckpt && bash download.sh
|
55 |
RUN cd ./FateZero/data && bash download.sh
|
56 |
-
RUN cd Tune-A-Video && patch -p1 < ../patch
|
57 |
ENV PYTHONPATH=${HOME}/app \
|
58 |
PYTHONUNBUFFERED=1 \
|
59 |
GRADIO_ALLOW_FLAGGING=never \
|
|
|
53 |
RUN ls -a
|
54 |
RUN cd ./FateZero/ckpt && bash download.sh
|
55 |
RUN cd ./FateZero/data && bash download.sh
|
|
|
56 |
ENV PYTHONPATH=${HOME}/app \
|
57 |
PYTHONUNBUFFERED=1 \
|
58 |
GRADIO_ALLOW_FLAGGING=never \
|
FateZero/test_fatezero.py
CHANGED
@@ -260,7 +260,7 @@ def run(config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_step
|
|
260 |
if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
|
261 |
test(config=config, **Omegadict)
|
262 |
print('test finished')
|
263 |
-
return
|
264 |
else:
|
265 |
# Go through all ckpt if possible
|
266 |
checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
|
|
|
260 |
if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
|
261 |
test(config=config, **Omegadict)
|
262 |
print('test finished')
|
263 |
+
return None
|
264 |
else:
|
265 |
# Go through all ckpt if possible
|
266 |
checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
|
Tune-A-Video/README.md
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
# Tune-A-Video
|
2 |
-
|
3 |
-
This repository is the official implementation of [Tune-A-Video](https://arxiv.org/abs/2212.11565).
|
4 |
-
|
5 |
-
**[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)**
|
6 |
-
<br/>
|
7 |
-
[Jay Zhangjie Wu](https://zhangjiewu.github.io/),
|
8 |
-
[Yixiao Ge](https://geyixiao.com/),
|
9 |
-
[Xintao Wang](https://xinntao.github.io/),
|
10 |
-
[Stan Weixian Lei](),
|
11 |
-
[Yuchao Gu](https://ycgu.site/),
|
12 |
-
[Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/),
|
13 |
-
[Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
|
14 |
-
[Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en),
|
15 |
-
[Mike Zheng Shou](https://sites.google.com/view/showlab)
|
16 |
-
<br/>
|
17 |
-
|
18 |
-
[Project Page](https://tuneavideo.github.io/) | [arXiv](https://arxiv.org/abs/2212.11565)
|
19 |
-
|
20 |
-
## Setup
|
21 |
-
|
22 |
-
### Requirements
|
23 |
-
|
24 |
-
```shell
|
25 |
-
pip install -r requirements.txt
|
26 |
-
```
|
27 |
-
|
28 |
-
Installing [xformers](https://github.com/facebookresearch/xformers) is highly recommended for more efficiency and speed on GPUs.
|
29 |
-
To enable xformers, set `enable_xformers_memory_efficient_attention=True` (default).
|
30 |
-
|
31 |
-
### Weights
|
32 |
-
|
33 |
-
You can download the pre-trained [Stable Diffusion](https://arxiv.org/abs/2112.10752) models
|
34 |
-
(e.g., [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)):
|
35 |
-
|
36 |
-
```shell
|
37 |
-
git lfs install
|
38 |
-
git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
|
39 |
-
```
|
40 |
-
|
41 |
-
Alternatively, you can use a personalized [DreamBooth](https://arxiv.org/abs/2208.12242) model (e.g., [mr-potato-head](https://huggingface.co/sd-dreambooth-library/mr-potato-head)):
|
42 |
-
```shell
|
43 |
-
git lfs install
|
44 |
-
git clone https://huggingface.co/sd-dreambooth-library/mr-potato-head
|
45 |
-
```
|
46 |
-
|
47 |
-
## Training
|
48 |
-
|
49 |
-
To fine-tune the text-to-image diffusion models for text-to-video generation, run this command:
|
50 |
-
|
51 |
-
```shell
|
52 |
-
accelerate launch train_tuneavideo.py --config="configs/man-surfing.yaml"
|
53 |
-
```
|
54 |
-
|
55 |
-
## Inference
|
56 |
-
|
57 |
-
Once the training is done, run inference:
|
58 |
-
|
59 |
-
```python
|
60 |
-
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
61 |
-
from tuneavideo.models.unet import UNet3DConditionModel
|
62 |
-
from tuneavideo.util import save_videos_grid
|
63 |
-
import torch
|
64 |
-
|
65 |
-
model_id = "path-to-your-trained-model"
|
66 |
-
unet = UNet3DConditionModel.from_pretrained(model_id, subfolder='unet', torch_dtype=torch.float16).to('cuda')
|
67 |
-
pipe = TuneAVideoPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", unet=unet, torch_dtype=torch.float16).to("cuda")
|
68 |
-
|
69 |
-
prompt = "a panda is surfing"
|
70 |
-
video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos
|
71 |
-
|
72 |
-
save_videos_grid(video, f"{prompt}.gif")
|
73 |
-
```
|
74 |
-
|
75 |
-
## Results
|
76 |
-
|
77 |
-
### Fine-tuning on Stable Diffusion
|
78 |
-
|
79 |
-
<table width="100%" align="center">
|
80 |
-
<tr>
|
81 |
-
<td><img src="https://tuneavideo.github.io/static/results/man-surfing/train.gif"></td>
|
82 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/panda-surfing.gif"></td>
|
83 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/ironman-desert.gif"></td>
|
84 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/raccoon-cartoon.gif"></td>
|
85 |
-
</tr>
|
86 |
-
<tr>
|
87 |
-
<td width=25% style="text-align:center;color:gray;">[Training] a man is surfing.</td>
|
88 |
-
<td width=25% style="text-align:center;">a panda is surfing.</td>
|
89 |
-
<td width=25% style="text-align:center;">Iron Man is surfing in the desert.</td>
|
90 |
-
<td width=25% style="text-align:center;">a raccoon is surfing, cartoon style.</td>
|
91 |
-
</tr>
|
92 |
-
</table>
|
93 |
-
|
94 |
-
### Fine-tuning on DreamBooth
|
95 |
-
|
96 |
-
<table width="100%" align="center">
|
97 |
-
<tr>
|
98 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/mr-potato-head.png"></td>
|
99 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/pink-hat.gif"></td>
|
100 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/potato-sunglasses.gif"></td>
|
101 |
-
<td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/potato-forest.gif"></td>
|
102 |
-
</tr>
|
103 |
-
<tr>
|
104 |
-
<td width=25% style="text-align:center;color:gray;">sks mr potato head.</td>
|
105 |
-
<td width=25% style="text-align:center;">sks mr potato head, wearing a pink hat, is surfing.</td>
|
106 |
-
<td width=25% style="text-align:center;">sks mr potato head, wearing sunglasses, is surfing.</td>
|
107 |
-
<td width=25% style="text-align:center;">sks mr potato head is surfing in the forest.</td>
|
108 |
-
</tr>
|
109 |
-
</table>
|
110 |
-
|
111 |
-
## BibTeX
|
112 |
-
```
|
113 |
-
@article{wu2022tuneavideo,
|
114 |
-
title={Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation},
|
115 |
-
author={Wu, Jay Zhangjie and Ge, Yixiao and Wang, Xintao and Lei, Stan Weixian and Gu, Yuchao and Hsu, Wynne and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
|
116 |
-
journal={arXiv preprint arXiv:2212.11565},
|
117 |
-
year={2022}
|
118 |
-
}
|
119 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/configs/man-surfing.yaml
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
|
2 |
-
output_dir: "./outputs/man-surfing_lr3e-5_seed33"
|
3 |
-
|
4 |
-
train_data:
|
5 |
-
video_path: "data/man-surfing.mp4"
|
6 |
-
prompt: "a man is surfing"
|
7 |
-
n_sample_frames: 8
|
8 |
-
width: 512
|
9 |
-
height: 512
|
10 |
-
sample_start_idx: 0
|
11 |
-
sample_frame_rate: 1
|
12 |
-
|
13 |
-
validation_data:
|
14 |
-
prompts:
|
15 |
-
- "a panda is surfing"
|
16 |
-
- "a boy, wearing a birthday hat, is surfing"
|
17 |
-
- "a raccoon is surfing, cartoon style"
|
18 |
-
- "Iron Man is surfing in the desert"
|
19 |
-
video_length: 8
|
20 |
-
width: 512
|
21 |
-
height: 512
|
22 |
-
num_inference_steps: 50
|
23 |
-
guidance_scale: 7.5
|
24 |
-
|
25 |
-
learning_rate: 3e-5
|
26 |
-
train_batch_size: 1
|
27 |
-
max_train_steps: 300
|
28 |
-
checkpointing_steps: 1000
|
29 |
-
validation_steps: 100
|
30 |
-
trainable_modules:
|
31 |
-
- "attn1.to_q"
|
32 |
-
- "attn2.to_q"
|
33 |
-
- "attn_temp"
|
34 |
-
|
35 |
-
seed: 33
|
36 |
-
mixed_precision: fp16
|
37 |
-
use_8bit_adam: False
|
38 |
-
gradient_checkpointing: True
|
39 |
-
enable_xformers_memory_efficient_attention: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/configs/mr-potato-head.yaml
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
pretrained_model_path: "./checkpoints/mr-potato-head"
|
2 |
-
output_dir: "./outputs/mr-potato-head_lr3e-5_seed33"
|
3 |
-
|
4 |
-
train_data:
|
5 |
-
video_path: "data/man-surfing.mp4"
|
6 |
-
prompt: "a man is surfing"
|
7 |
-
n_sample_frames: 8
|
8 |
-
width: 512
|
9 |
-
height: 512
|
10 |
-
sample_start_idx: 0
|
11 |
-
sample_frame_rate: 1
|
12 |
-
|
13 |
-
validation_data:
|
14 |
-
prompts:
|
15 |
-
- "sks mr potato head is surfing"
|
16 |
-
- "sks mr potato head, wearing a pink hat, is surfing"
|
17 |
-
- "sks mr potato head, wearing funny sunglasses, is surfing"
|
18 |
-
- "sks mr potato head is surfing in the forest"
|
19 |
-
video_length: 8
|
20 |
-
width: 512
|
21 |
-
height: 512
|
22 |
-
num_inference_steps: 50
|
23 |
-
guidance_scale: 7.5
|
24 |
-
|
25 |
-
learning_rate: 3e-5
|
26 |
-
train_batch_size: 1
|
27 |
-
max_train_steps: 500
|
28 |
-
checkpointing_steps: 1000
|
29 |
-
validation_steps: 100
|
30 |
-
trainable_modules:
|
31 |
-
- "attn1.to_q"
|
32 |
-
- "attn2.to_q"
|
33 |
-
- "attn_temp"
|
34 |
-
|
35 |
-
seed: 33
|
36 |
-
mixed_precision: fp16
|
37 |
-
use_8bit_adam: False
|
38 |
-
gradient_checkpointing: True
|
39 |
-
enable_xformers_memory_efficient_attention: True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/data/man-surfing.mp4
DELETED
Binary file (786 kB)
|
|
Tune-A-Video/requirements.txt
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
torch==1.12.1
|
2 |
-
torchvision==0.13.1
|
3 |
-
diffusers[torch]==0.11.1
|
4 |
-
transformers>=4.25.1
|
5 |
-
bitsandbytes==0.35.4
|
6 |
-
decord==0.6.0
|
7 |
-
accelerate
|
8 |
-
tensorboard
|
9 |
-
modelcards
|
10 |
-
omegaconf
|
11 |
-
einops
|
12 |
-
imageio
|
13 |
-
ftfy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/train_tuneavideo.py
DELETED
@@ -1,352 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import datetime
|
3 |
-
import logging
|
4 |
-
import inspect
|
5 |
-
import math
|
6 |
-
import os
|
7 |
-
from typing import Dict, Optional, Tuple
|
8 |
-
from omegaconf import OmegaConf
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.nn.functional as F
|
12 |
-
import torch.utils.checkpoint
|
13 |
-
|
14 |
-
import diffusers
|
15 |
-
import transformers
|
16 |
-
from accelerate import Accelerator
|
17 |
-
from accelerate.logging import get_logger
|
18 |
-
from accelerate.utils import set_seed
|
19 |
-
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
20 |
-
from diffusers.optimization import get_scheduler
|
21 |
-
from diffusers.utils import check_min_version
|
22 |
-
from diffusers.utils.import_utils import is_xformers_available
|
23 |
-
from tqdm.auto import tqdm
|
24 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
-
|
26 |
-
from tuneavideo.models.unet import UNet3DConditionModel
|
27 |
-
from tuneavideo.data.dataset import TuneAVideoDataset
|
28 |
-
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
29 |
-
from tuneavideo.util import save_videos_grid
|
30 |
-
from einops import rearrange
|
31 |
-
|
32 |
-
|
33 |
-
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
34 |
-
check_min_version("0.10.0.dev0")
|
35 |
-
|
36 |
-
logger = get_logger(__name__, log_level="INFO")
|
37 |
-
|
38 |
-
|
39 |
-
def main(
|
40 |
-
pretrained_model_path: str,
|
41 |
-
output_dir: str,
|
42 |
-
train_data: Dict,
|
43 |
-
validation_data: Dict,
|
44 |
-
validation_steps: int = 100,
|
45 |
-
trainable_modules: Tuple[str] = (
|
46 |
-
"attn1.to_q",
|
47 |
-
"attn2.to_q",
|
48 |
-
"attn_temp",
|
49 |
-
),
|
50 |
-
train_batch_size: int = 1,
|
51 |
-
max_train_steps: int = 500,
|
52 |
-
learning_rate: float = 3e-5,
|
53 |
-
scale_lr: bool = False,
|
54 |
-
lr_scheduler: str = "constant",
|
55 |
-
lr_warmup_steps: int = 0,
|
56 |
-
adam_beta1: float = 0.9,
|
57 |
-
adam_beta2: float = 0.999,
|
58 |
-
adam_weight_decay: float = 1e-2,
|
59 |
-
adam_epsilon: float = 1e-08,
|
60 |
-
max_grad_norm: float = 1.0,
|
61 |
-
gradient_accumulation_steps: int = 1,
|
62 |
-
gradient_checkpointing: bool = True,
|
63 |
-
checkpointing_steps: int = 500,
|
64 |
-
resume_from_checkpoint: Optional[str] = None,
|
65 |
-
mixed_precision: Optional[str] = "fp16",
|
66 |
-
use_8bit_adam: bool = False,
|
67 |
-
enable_xformers_memory_efficient_attention: bool = True,
|
68 |
-
seed: Optional[int] = None,
|
69 |
-
):
|
70 |
-
*_, config = inspect.getargvalues(inspect.currentframe())
|
71 |
-
|
72 |
-
accelerator = Accelerator(
|
73 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
74 |
-
mixed_precision=mixed_precision,
|
75 |
-
)
|
76 |
-
|
77 |
-
# Make one log on every process with the configuration for debugging.
|
78 |
-
logging.basicConfig(
|
79 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
80 |
-
datefmt="%m/%d/%Y %H:%M:%S",
|
81 |
-
level=logging.INFO,
|
82 |
-
)
|
83 |
-
logger.info(accelerator.state, main_process_only=False)
|
84 |
-
if accelerator.is_local_main_process:
|
85 |
-
transformers.utils.logging.set_verbosity_warning()
|
86 |
-
diffusers.utils.logging.set_verbosity_info()
|
87 |
-
else:
|
88 |
-
transformers.utils.logging.set_verbosity_error()
|
89 |
-
diffusers.utils.logging.set_verbosity_error()
|
90 |
-
|
91 |
-
# If passed along, set the training seed now.
|
92 |
-
if seed is not None:
|
93 |
-
set_seed(seed)
|
94 |
-
|
95 |
-
# Handle the output folder creation
|
96 |
-
if accelerator.is_main_process:
|
97 |
-
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
98 |
-
output_dir = os.path.join(output_dir, now)
|
99 |
-
os.makedirs(output_dir, exist_ok=True)
|
100 |
-
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
101 |
-
|
102 |
-
# Load scheduler, tokenizer and models.
|
103 |
-
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
104 |
-
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
105 |
-
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
106 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
107 |
-
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
|
108 |
-
|
109 |
-
# Freeze vae and text_encoder
|
110 |
-
vae.requires_grad_(False)
|
111 |
-
text_encoder.requires_grad_(False)
|
112 |
-
|
113 |
-
unet.requires_grad_(False)
|
114 |
-
for name, module in unet.named_modules():
|
115 |
-
if name.endswith(tuple(trainable_modules)):
|
116 |
-
for params in module.parameters():
|
117 |
-
params.requires_grad = True
|
118 |
-
|
119 |
-
if enable_xformers_memory_efficient_attention:
|
120 |
-
if is_xformers_available():
|
121 |
-
unet.enable_xformers_memory_efficient_attention()
|
122 |
-
else:
|
123 |
-
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
124 |
-
|
125 |
-
if gradient_checkpointing:
|
126 |
-
unet.enable_gradient_checkpointing()
|
127 |
-
|
128 |
-
if scale_lr:
|
129 |
-
learning_rate = (
|
130 |
-
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
|
131 |
-
)
|
132 |
-
|
133 |
-
# Initialize the optimizer
|
134 |
-
if use_8bit_adam:
|
135 |
-
try:
|
136 |
-
import bitsandbytes as bnb
|
137 |
-
except ImportError:
|
138 |
-
raise ImportError(
|
139 |
-
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
140 |
-
)
|
141 |
-
|
142 |
-
optimizer_cls = bnb.optim.AdamW8bit
|
143 |
-
else:
|
144 |
-
optimizer_cls = torch.optim.AdamW
|
145 |
-
|
146 |
-
optimizer = optimizer_cls(
|
147 |
-
unet.parameters(),
|
148 |
-
lr=learning_rate,
|
149 |
-
betas=(adam_beta1, adam_beta2),
|
150 |
-
weight_decay=adam_weight_decay,
|
151 |
-
eps=adam_epsilon,
|
152 |
-
)
|
153 |
-
|
154 |
-
# Get the training dataset
|
155 |
-
train_dataset = TuneAVideoDataset(**train_data)
|
156 |
-
|
157 |
-
# Preprocessing the dataset
|
158 |
-
train_dataset.prompt_ids = tokenizer(
|
159 |
-
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
160 |
-
).input_ids[0]
|
161 |
-
|
162 |
-
# DataLoaders creation:
|
163 |
-
train_dataloader = torch.utils.data.DataLoader(
|
164 |
-
train_dataset, batch_size=train_batch_size
|
165 |
-
)
|
166 |
-
|
167 |
-
# Get the validation pipeline
|
168 |
-
validation_pipeline = TuneAVideoPipeline(
|
169 |
-
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
170 |
-
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
171 |
-
)
|
172 |
-
|
173 |
-
# Scheduler
|
174 |
-
lr_scheduler = get_scheduler(
|
175 |
-
lr_scheduler,
|
176 |
-
optimizer=optimizer,
|
177 |
-
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
|
178 |
-
num_training_steps=max_train_steps * gradient_accumulation_steps,
|
179 |
-
)
|
180 |
-
|
181 |
-
# Prepare everything with our `accelerator`.
|
182 |
-
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
183 |
-
unet, optimizer, train_dataloader, lr_scheduler
|
184 |
-
)
|
185 |
-
|
186 |
-
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
187 |
-
# as these models are only used for inference, keeping weights in full precision is not required.
|
188 |
-
weight_dtype = torch.float32
|
189 |
-
if accelerator.mixed_precision == "fp16":
|
190 |
-
weight_dtype = torch.float16
|
191 |
-
elif accelerator.mixed_precision == "bf16":
|
192 |
-
weight_dtype = torch.bfloat16
|
193 |
-
|
194 |
-
# Move text_encode and vae to gpu and cast to weight_dtype
|
195 |
-
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
196 |
-
vae.to(accelerator.device, dtype=weight_dtype)
|
197 |
-
|
198 |
-
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
199 |
-
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
|
200 |
-
# Afterwards we recalculate our number of training epochs
|
201 |
-
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
202 |
-
|
203 |
-
# We need to initialize the trackers we use, and also store our configuration.
|
204 |
-
# The trackers initializes automatically on the main process.
|
205 |
-
if accelerator.is_main_process:
|
206 |
-
accelerator.init_trackers("text2video-fine-tune")
|
207 |
-
|
208 |
-
# Train!
|
209 |
-
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
210 |
-
|
211 |
-
logger.info("***** Running training *****")
|
212 |
-
logger.info(f" Num examples = {len(train_dataset)}")
|
213 |
-
logger.info(f" Num Epochs = {num_train_epochs}")
|
214 |
-
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
215 |
-
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
216 |
-
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
|
217 |
-
logger.info(f" Total optimization steps = {max_train_steps}")
|
218 |
-
global_step = 0
|
219 |
-
first_epoch = 0
|
220 |
-
|
221 |
-
# Potentially load in the weights and states from a previous save
|
222 |
-
if resume_from_checkpoint:
|
223 |
-
if resume_from_checkpoint != "latest":
|
224 |
-
path = os.path.basename(resume_from_checkpoint)
|
225 |
-
else:
|
226 |
-
# Get the most recent checkpoint
|
227 |
-
dirs = os.listdir(output_dir)
|
228 |
-
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
229 |
-
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
230 |
-
path = dirs[-1]
|
231 |
-
accelerator.print(f"Resuming from checkpoint {path}")
|
232 |
-
accelerator.load_state(os.path.join(output_dir, path))
|
233 |
-
global_step = int(path.split("-")[1])
|
234 |
-
|
235 |
-
first_epoch = global_step // num_update_steps_per_epoch
|
236 |
-
resume_step = global_step % num_update_steps_per_epoch
|
237 |
-
|
238 |
-
# Only show the progress bar once on each machine.
|
239 |
-
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
|
240 |
-
progress_bar.set_description("Steps")
|
241 |
-
|
242 |
-
for epoch in range(first_epoch, num_train_epochs):
|
243 |
-
unet.train()
|
244 |
-
train_loss = 0.0
|
245 |
-
for step, batch in enumerate(train_dataloader):
|
246 |
-
# Skip steps until we reach the resumed step
|
247 |
-
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
248 |
-
if step % gradient_accumulation_steps == 0:
|
249 |
-
progress_bar.update(1)
|
250 |
-
continue
|
251 |
-
|
252 |
-
with accelerator.accumulate(unet):
|
253 |
-
# Convert videos to latent space
|
254 |
-
pixel_values = batch["pixel_values"].to(weight_dtype)
|
255 |
-
video_length = pixel_values.shape[1]
|
256 |
-
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
|
257 |
-
latents = vae.encode(pixel_values).latent_dist.sample()
|
258 |
-
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
|
259 |
-
latents = latents * 0.18215
|
260 |
-
|
261 |
-
# Sample noise that we'll add to the latents
|
262 |
-
noise = torch.randn_like(latents)
|
263 |
-
bsz = latents.shape[0]
|
264 |
-
# Sample a random timestep for each video
|
265 |
-
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
|
266 |
-
timesteps = timesteps.long()
|
267 |
-
|
268 |
-
# Add noise to the latents according to the noise magnitude at each timestep
|
269 |
-
# (this is the forward diffusion process)
|
270 |
-
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
271 |
-
|
272 |
-
# Get the text embedding for conditioning
|
273 |
-
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
|
274 |
-
|
275 |
-
# Get the target for loss depending on the prediction type
|
276 |
-
if noise_scheduler.prediction_type == "epsilon":
|
277 |
-
target = noise
|
278 |
-
elif noise_scheduler.prediction_type == "v_prediction":
|
279 |
-
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
280 |
-
else:
|
281 |
-
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
|
282 |
-
|
283 |
-
# Predict the noise residual and compute loss
|
284 |
-
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
285 |
-
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
286 |
-
|
287 |
-
# Gather the losses across all processes for logging (if we use distributed training).
|
288 |
-
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
|
289 |
-
train_loss += avg_loss.item() / gradient_accumulation_steps
|
290 |
-
|
291 |
-
# Backpropagate
|
292 |
-
accelerator.backward(loss)
|
293 |
-
if accelerator.sync_gradients:
|
294 |
-
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
|
295 |
-
optimizer.step()
|
296 |
-
lr_scheduler.step()
|
297 |
-
optimizer.zero_grad()
|
298 |
-
|
299 |
-
# Checks if the accelerator has performed an optimization step behind the scenes
|
300 |
-
if accelerator.sync_gradients:
|
301 |
-
progress_bar.update(1)
|
302 |
-
global_step += 1
|
303 |
-
accelerator.log({"train_loss": train_loss}, step=global_step)
|
304 |
-
train_loss = 0.0
|
305 |
-
|
306 |
-
if global_step % checkpointing_steps == 0:
|
307 |
-
if accelerator.is_main_process:
|
308 |
-
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
|
309 |
-
accelerator.save_state(save_path)
|
310 |
-
logger.info(f"Saved state to {save_path}")
|
311 |
-
|
312 |
-
if global_step % validation_steps == 0:
|
313 |
-
if accelerator.is_main_process:
|
314 |
-
save_path = os.path.join(output_dir, f"samples/sample-{global_step}.gif")
|
315 |
-
samples = []
|
316 |
-
generator = torch.Generator(device=latents.device)
|
317 |
-
generator.manual_seed(seed)
|
318 |
-
for idx, prompt in enumerate(validation_data.prompts):
|
319 |
-
sample = validation_pipeline(prompt, generator=generator, **validation_data).videos
|
320 |
-
save_videos_grid(sample, os.path.join(output_dir, f"samples/sample-{global_step}/{prompt}.gif"))
|
321 |
-
samples.append(sample)
|
322 |
-
samples = torch.concat(samples)
|
323 |
-
save_videos_grid(samples, save_path)
|
324 |
-
logger.info(f"Saved samples to {save_path}")
|
325 |
-
|
326 |
-
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
327 |
-
progress_bar.set_postfix(**logs)
|
328 |
-
|
329 |
-
if global_step >= max_train_steps:
|
330 |
-
break
|
331 |
-
|
332 |
-
# Create the pipeline using the trained modules and save it.
|
333 |
-
accelerator.wait_for_everyone()
|
334 |
-
if accelerator.is_main_process:
|
335 |
-
unet = accelerator.unwrap_model(unet)
|
336 |
-
pipeline = TuneAVideoPipeline.from_pretrained(
|
337 |
-
pretrained_model_path,
|
338 |
-
text_encoder=text_encoder,
|
339 |
-
vae=vae,
|
340 |
-
unet=unet,
|
341 |
-
)
|
342 |
-
pipeline.save_pretrained(output_dir)
|
343 |
-
|
344 |
-
accelerator.end_training()
|
345 |
-
|
346 |
-
|
347 |
-
if __name__ == "__main__":
|
348 |
-
parser = argparse.ArgumentParser()
|
349 |
-
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
|
350 |
-
args = parser.parse_args()
|
351 |
-
|
352 |
-
main(**OmegaConf.load(args.config))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/data/dataset.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import decord
|
2 |
-
decord.bridge.set_bridge('torch')
|
3 |
-
|
4 |
-
from torch.utils.data import Dataset
|
5 |
-
from einops import rearrange
|
6 |
-
|
7 |
-
|
8 |
-
class TuneAVideoDataset(Dataset):
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
video_path: str,
|
12 |
-
prompt: str,
|
13 |
-
width: int = 512,
|
14 |
-
height: int = 512,
|
15 |
-
n_sample_frames: int = 8,
|
16 |
-
sample_start_idx: int = 0,
|
17 |
-
sample_frame_rate: int = 1,
|
18 |
-
):
|
19 |
-
self.video_path = video_path
|
20 |
-
self.prompt = prompt
|
21 |
-
self.prompt_ids = None
|
22 |
-
|
23 |
-
self.width = width
|
24 |
-
self.height = height
|
25 |
-
self.n_sample_frames = n_sample_frames
|
26 |
-
self.sample_start_idx = sample_start_idx
|
27 |
-
self.sample_frame_rate = sample_frame_rate
|
28 |
-
|
29 |
-
def __len__(self):
|
30 |
-
return 1
|
31 |
-
|
32 |
-
def __getitem__(self, index):
|
33 |
-
# load and sample video frames
|
34 |
-
vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
|
35 |
-
sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
|
36 |
-
video = vr.get_batch(sample_index)
|
37 |
-
video = rearrange(video, "f h w c -> f c h w")
|
38 |
-
|
39 |
-
example = {
|
40 |
-
"pixel_values": (video / 127.5 - 1.0),
|
41 |
-
"prompt_ids": self.prompt_ids
|
42 |
-
}
|
43 |
-
|
44 |
-
return example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/models/__pycache__/attention.cpython-38.pyc
DELETED
Binary file (7.74 kB)
|
|
Tune-A-Video/tuneavideo/models/__pycache__/resnet.cpython-38.pyc
DELETED
Binary file (5.13 kB)
|
|
Tune-A-Video/tuneavideo/models/__pycache__/unet.cpython-38.pyc
DELETED
Binary file (11.1 kB)
|
|
Tune-A-Video/tuneavideo/models/__pycache__/unet_blocks.cpython-38.pyc
DELETED
Binary file (10.5 kB)
|
|
Tune-A-Video/tuneavideo/models/attention.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
-
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Optional
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from torch import nn
|
9 |
-
|
10 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
-
from diffusers.modeling_utils import ModelMixin
|
12 |
-
from diffusers.utils import BaseOutput
|
13 |
-
from diffusers.utils.import_utils import is_xformers_available
|
14 |
-
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
15 |
-
|
16 |
-
from einops import rearrange, repeat
|
17 |
-
|
18 |
-
|
19 |
-
@dataclass
|
20 |
-
class Transformer3DModelOutput(BaseOutput):
|
21 |
-
sample: torch.FloatTensor
|
22 |
-
|
23 |
-
|
24 |
-
if is_xformers_available():
|
25 |
-
import xformers
|
26 |
-
import xformers.ops
|
27 |
-
else:
|
28 |
-
xformers = None
|
29 |
-
|
30 |
-
|
31 |
-
class Transformer3DModel(ModelMixin, ConfigMixin):
|
32 |
-
@register_to_config
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
num_attention_heads: int = 16,
|
36 |
-
attention_head_dim: int = 88,
|
37 |
-
in_channels: Optional[int] = None,
|
38 |
-
num_layers: int = 1,
|
39 |
-
dropout: float = 0.0,
|
40 |
-
norm_num_groups: int = 32,
|
41 |
-
cross_attention_dim: Optional[int] = None,
|
42 |
-
attention_bias: bool = False,
|
43 |
-
activation_fn: str = "geglu",
|
44 |
-
num_embeds_ada_norm: Optional[int] = None,
|
45 |
-
use_linear_projection: bool = False,
|
46 |
-
only_cross_attention: bool = False,
|
47 |
-
upcast_attention: bool = False,
|
48 |
-
):
|
49 |
-
super().__init__()
|
50 |
-
self.use_linear_projection = use_linear_projection
|
51 |
-
self.num_attention_heads = num_attention_heads
|
52 |
-
self.attention_head_dim = attention_head_dim
|
53 |
-
inner_dim = num_attention_heads * attention_head_dim
|
54 |
-
|
55 |
-
# Define input layers
|
56 |
-
self.in_channels = in_channels
|
57 |
-
|
58 |
-
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
59 |
-
if use_linear_projection:
|
60 |
-
self.proj_in = nn.Linear(in_channels, inner_dim)
|
61 |
-
else:
|
62 |
-
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
63 |
-
|
64 |
-
# Define transformers blocks
|
65 |
-
self.transformer_blocks = nn.ModuleList(
|
66 |
-
[
|
67 |
-
BasicTransformerBlock(
|
68 |
-
inner_dim,
|
69 |
-
num_attention_heads,
|
70 |
-
attention_head_dim,
|
71 |
-
dropout=dropout,
|
72 |
-
cross_attention_dim=cross_attention_dim,
|
73 |
-
activation_fn=activation_fn,
|
74 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
75 |
-
attention_bias=attention_bias,
|
76 |
-
only_cross_attention=only_cross_attention,
|
77 |
-
upcast_attention=upcast_attention,
|
78 |
-
)
|
79 |
-
for d in range(num_layers)
|
80 |
-
]
|
81 |
-
)
|
82 |
-
|
83 |
-
# 4. Define output layers
|
84 |
-
if use_linear_projection:
|
85 |
-
self.proj_out = nn.Linear(in_channels, inner_dim)
|
86 |
-
else:
|
87 |
-
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
88 |
-
|
89 |
-
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
90 |
-
# Input
|
91 |
-
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
92 |
-
video_length = hidden_states.shape[2]
|
93 |
-
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
94 |
-
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
95 |
-
|
96 |
-
batch, channel, height, weight = hidden_states.shape
|
97 |
-
residual = hidden_states
|
98 |
-
|
99 |
-
hidden_states = self.norm(hidden_states)
|
100 |
-
if not self.use_linear_projection:
|
101 |
-
hidden_states = self.proj_in(hidden_states)
|
102 |
-
inner_dim = hidden_states.shape[1]
|
103 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
104 |
-
else:
|
105 |
-
inner_dim = hidden_states.shape[1]
|
106 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
107 |
-
hidden_states = self.proj_in(hidden_states)
|
108 |
-
|
109 |
-
# Blocks
|
110 |
-
for block in self.transformer_blocks:
|
111 |
-
hidden_states = block(
|
112 |
-
hidden_states,
|
113 |
-
encoder_hidden_states=encoder_hidden_states,
|
114 |
-
timestep=timestep,
|
115 |
-
video_length=video_length
|
116 |
-
)
|
117 |
-
|
118 |
-
# Output
|
119 |
-
if not self.use_linear_projection:
|
120 |
-
hidden_states = (
|
121 |
-
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
122 |
-
)
|
123 |
-
hidden_states = self.proj_out(hidden_states)
|
124 |
-
else:
|
125 |
-
hidden_states = self.proj_out(hidden_states)
|
126 |
-
hidden_states = (
|
127 |
-
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
128 |
-
)
|
129 |
-
|
130 |
-
output = hidden_states + residual
|
131 |
-
|
132 |
-
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
133 |
-
if not return_dict:
|
134 |
-
return (output,)
|
135 |
-
|
136 |
-
return Transformer3DModelOutput(sample=output)
|
137 |
-
|
138 |
-
|
139 |
-
class BasicTransformerBlock(nn.Module):
|
140 |
-
def __init__(
|
141 |
-
self,
|
142 |
-
dim: int,
|
143 |
-
num_attention_heads: int,
|
144 |
-
attention_head_dim: int,
|
145 |
-
dropout=0.0,
|
146 |
-
cross_attention_dim: Optional[int] = None,
|
147 |
-
activation_fn: str = "geglu",
|
148 |
-
num_embeds_ada_norm: Optional[int] = None,
|
149 |
-
attention_bias: bool = False,
|
150 |
-
only_cross_attention: bool = False,
|
151 |
-
upcast_attention: bool = False,
|
152 |
-
):
|
153 |
-
super().__init__()
|
154 |
-
self.only_cross_attention = only_cross_attention
|
155 |
-
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
156 |
-
|
157 |
-
# SC-Attn
|
158 |
-
self.attn1 = SparseCausalAttention(
|
159 |
-
query_dim=dim,
|
160 |
-
heads=num_attention_heads,
|
161 |
-
dim_head=attention_head_dim,
|
162 |
-
dropout=dropout,
|
163 |
-
bias=attention_bias,
|
164 |
-
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
165 |
-
upcast_attention=upcast_attention,
|
166 |
-
)
|
167 |
-
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
168 |
-
|
169 |
-
# Cross-Attn
|
170 |
-
if cross_attention_dim is not None:
|
171 |
-
self.attn2 = CrossAttention(
|
172 |
-
query_dim=dim,
|
173 |
-
cross_attention_dim=cross_attention_dim,
|
174 |
-
heads=num_attention_heads,
|
175 |
-
dim_head=attention_head_dim,
|
176 |
-
dropout=dropout,
|
177 |
-
bias=attention_bias,
|
178 |
-
upcast_attention=upcast_attention,
|
179 |
-
)
|
180 |
-
else:
|
181 |
-
self.attn2 = None
|
182 |
-
|
183 |
-
if cross_attention_dim is not None:
|
184 |
-
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
185 |
-
else:
|
186 |
-
self.norm2 = None
|
187 |
-
|
188 |
-
# Feed-forward
|
189 |
-
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
190 |
-
self.norm3 = nn.LayerNorm(dim)
|
191 |
-
|
192 |
-
# Temp-Attn
|
193 |
-
self.attn_temp = CrossAttention(
|
194 |
-
query_dim=dim,
|
195 |
-
heads=num_attention_heads,
|
196 |
-
dim_head=attention_head_dim,
|
197 |
-
dropout=dropout,
|
198 |
-
bias=attention_bias,
|
199 |
-
upcast_attention=upcast_attention,
|
200 |
-
)
|
201 |
-
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
202 |
-
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
203 |
-
|
204 |
-
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
205 |
-
if not is_xformers_available():
|
206 |
-
print("Here is how to install it")
|
207 |
-
raise ModuleNotFoundError(
|
208 |
-
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
209 |
-
" xformers",
|
210 |
-
name="xformers",
|
211 |
-
)
|
212 |
-
elif not torch.cuda.is_available():
|
213 |
-
raise ValueError(
|
214 |
-
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
215 |
-
" available for GPU "
|
216 |
-
)
|
217 |
-
else:
|
218 |
-
try:
|
219 |
-
# Make sure we can run the memory efficient attention
|
220 |
-
_ = xformers.ops.memory_efficient_attention(
|
221 |
-
torch.randn((1, 2, 40), device="cuda"),
|
222 |
-
torch.randn((1, 2, 40), device="cuda"),
|
223 |
-
torch.randn((1, 2, 40), device="cuda"),
|
224 |
-
)
|
225 |
-
except Exception as e:
|
226 |
-
raise e
|
227 |
-
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
228 |
-
if self.attn2 is not None:
|
229 |
-
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
230 |
-
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
231 |
-
|
232 |
-
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
233 |
-
# SparseCausal-Attention
|
234 |
-
norm_hidden_states = (
|
235 |
-
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
236 |
-
)
|
237 |
-
|
238 |
-
if self.only_cross_attention:
|
239 |
-
hidden_states = (
|
240 |
-
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
241 |
-
)
|
242 |
-
else:
|
243 |
-
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
244 |
-
|
245 |
-
if self.attn2 is not None:
|
246 |
-
# Cross-Attention
|
247 |
-
norm_hidden_states = (
|
248 |
-
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
249 |
-
)
|
250 |
-
hidden_states = (
|
251 |
-
self.attn2(
|
252 |
-
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
253 |
-
)
|
254 |
-
+ hidden_states
|
255 |
-
)
|
256 |
-
|
257 |
-
# Feed-forward
|
258 |
-
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
259 |
-
|
260 |
-
# Temporal-Attention
|
261 |
-
d = hidden_states.shape[1]
|
262 |
-
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
263 |
-
norm_hidden_states = (
|
264 |
-
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
265 |
-
)
|
266 |
-
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
267 |
-
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
268 |
-
|
269 |
-
return hidden_states
|
270 |
-
|
271 |
-
|
272 |
-
class SparseCausalAttention(CrossAttention):
|
273 |
-
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
274 |
-
batch_size, sequence_length, _ = hidden_states.shape
|
275 |
-
|
276 |
-
encoder_hidden_states = encoder_hidden_states
|
277 |
-
|
278 |
-
if self.group_norm is not None:
|
279 |
-
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
280 |
-
|
281 |
-
query = self.to_q(hidden_states)
|
282 |
-
dim = query.shape[-1]
|
283 |
-
query = self.reshape_heads_to_batch_dim(query)
|
284 |
-
|
285 |
-
if self.added_kv_proj_dim is not None:
|
286 |
-
raise NotImplementedError
|
287 |
-
|
288 |
-
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
289 |
-
key = self.to_k(encoder_hidden_states)
|
290 |
-
value = self.to_v(encoder_hidden_states)
|
291 |
-
|
292 |
-
former_frame_index = torch.arange(video_length) - 1
|
293 |
-
former_frame_index[0] = 0
|
294 |
-
|
295 |
-
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
296 |
-
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
297 |
-
key = rearrange(key, "b f d c -> (b f) d c")
|
298 |
-
|
299 |
-
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
300 |
-
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
301 |
-
value = rearrange(value, "b f d c -> (b f) d c")
|
302 |
-
|
303 |
-
key = self.reshape_heads_to_batch_dim(key)
|
304 |
-
value = self.reshape_heads_to_batch_dim(value)
|
305 |
-
|
306 |
-
if attention_mask is not None:
|
307 |
-
if attention_mask.shape[-1] != query.shape[1]:
|
308 |
-
target_length = query.shape[1]
|
309 |
-
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
310 |
-
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
311 |
-
|
312 |
-
# attention, what we cannot get enough of
|
313 |
-
if self._use_memory_efficient_attention_xformers:
|
314 |
-
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
315 |
-
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
316 |
-
hidden_states = hidden_states.to(query.dtype)
|
317 |
-
else:
|
318 |
-
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
319 |
-
hidden_states = self._attention(query, key, value, attention_mask)
|
320 |
-
else:
|
321 |
-
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
322 |
-
|
323 |
-
# linear proj
|
324 |
-
hidden_states = self.to_out[0](hidden_states)
|
325 |
-
|
326 |
-
# dropout
|
327 |
-
hidden_states = self.to_out[1](hidden_states)
|
328 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/models/resnet.py
DELETED
@@ -1,209 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
from einops import rearrange
|
8 |
-
|
9 |
-
|
10 |
-
class InflatedConv3d(nn.Conv2d):
|
11 |
-
def forward(self, x):
|
12 |
-
video_length = x.shape[2]
|
13 |
-
|
14 |
-
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
-
x = super().forward(x)
|
16 |
-
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
-
|
18 |
-
return x
|
19 |
-
|
20 |
-
|
21 |
-
class Upsample3D(nn.Module):
|
22 |
-
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
23 |
-
super().__init__()
|
24 |
-
self.channels = channels
|
25 |
-
self.out_channels = out_channels or channels
|
26 |
-
self.use_conv = use_conv
|
27 |
-
self.use_conv_transpose = use_conv_transpose
|
28 |
-
self.name = name
|
29 |
-
|
30 |
-
conv = None
|
31 |
-
if use_conv_transpose:
|
32 |
-
raise NotImplementedError
|
33 |
-
elif use_conv:
|
34 |
-
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
35 |
-
|
36 |
-
if name == "conv":
|
37 |
-
self.conv = conv
|
38 |
-
else:
|
39 |
-
self.Conv2d_0 = conv
|
40 |
-
|
41 |
-
def forward(self, hidden_states, output_size=None):
|
42 |
-
assert hidden_states.shape[1] == self.channels
|
43 |
-
|
44 |
-
if self.use_conv_transpose:
|
45 |
-
raise NotImplementedError
|
46 |
-
|
47 |
-
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
48 |
-
dtype = hidden_states.dtype
|
49 |
-
if dtype == torch.bfloat16:
|
50 |
-
hidden_states = hidden_states.to(torch.float32)
|
51 |
-
|
52 |
-
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
53 |
-
if hidden_states.shape[0] >= 64:
|
54 |
-
hidden_states = hidden_states.contiguous()
|
55 |
-
|
56 |
-
# if `output_size` is passed we force the interpolation output
|
57 |
-
# size and do not make use of `scale_factor=2`
|
58 |
-
if output_size is None:
|
59 |
-
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
60 |
-
else:
|
61 |
-
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
62 |
-
|
63 |
-
# If the input is bfloat16, we cast back to bfloat16
|
64 |
-
if dtype == torch.bfloat16:
|
65 |
-
hidden_states = hidden_states.to(dtype)
|
66 |
-
|
67 |
-
if self.use_conv:
|
68 |
-
if self.name == "conv":
|
69 |
-
hidden_states = self.conv(hidden_states)
|
70 |
-
else:
|
71 |
-
hidden_states = self.Conv2d_0(hidden_states)
|
72 |
-
|
73 |
-
return hidden_states
|
74 |
-
|
75 |
-
|
76 |
-
class Downsample3D(nn.Module):
|
77 |
-
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
78 |
-
super().__init__()
|
79 |
-
self.channels = channels
|
80 |
-
self.out_channels = out_channels or channels
|
81 |
-
self.use_conv = use_conv
|
82 |
-
self.padding = padding
|
83 |
-
stride = 2
|
84 |
-
self.name = name
|
85 |
-
|
86 |
-
if use_conv:
|
87 |
-
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
88 |
-
else:
|
89 |
-
raise NotImplementedError
|
90 |
-
|
91 |
-
if name == "conv":
|
92 |
-
self.Conv2d_0 = conv
|
93 |
-
self.conv = conv
|
94 |
-
elif name == "Conv2d_0":
|
95 |
-
self.conv = conv
|
96 |
-
else:
|
97 |
-
self.conv = conv
|
98 |
-
|
99 |
-
def forward(self, hidden_states):
|
100 |
-
assert hidden_states.shape[1] == self.channels
|
101 |
-
if self.use_conv and self.padding == 0:
|
102 |
-
raise NotImplementedError
|
103 |
-
|
104 |
-
assert hidden_states.shape[1] == self.channels
|
105 |
-
hidden_states = self.conv(hidden_states)
|
106 |
-
|
107 |
-
return hidden_states
|
108 |
-
|
109 |
-
|
110 |
-
class ResnetBlock3D(nn.Module):
|
111 |
-
def __init__(
|
112 |
-
self,
|
113 |
-
*,
|
114 |
-
in_channels,
|
115 |
-
out_channels=None,
|
116 |
-
conv_shortcut=False,
|
117 |
-
dropout=0.0,
|
118 |
-
temb_channels=512,
|
119 |
-
groups=32,
|
120 |
-
groups_out=None,
|
121 |
-
pre_norm=True,
|
122 |
-
eps=1e-6,
|
123 |
-
non_linearity="swish",
|
124 |
-
time_embedding_norm="default",
|
125 |
-
output_scale_factor=1.0,
|
126 |
-
use_in_shortcut=None,
|
127 |
-
):
|
128 |
-
super().__init__()
|
129 |
-
self.pre_norm = pre_norm
|
130 |
-
self.pre_norm = True
|
131 |
-
self.in_channels = in_channels
|
132 |
-
out_channels = in_channels if out_channels is None else out_channels
|
133 |
-
self.out_channels = out_channels
|
134 |
-
self.use_conv_shortcut = conv_shortcut
|
135 |
-
self.time_embedding_norm = time_embedding_norm
|
136 |
-
self.output_scale_factor = output_scale_factor
|
137 |
-
|
138 |
-
if groups_out is None:
|
139 |
-
groups_out = groups
|
140 |
-
|
141 |
-
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
142 |
-
|
143 |
-
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
144 |
-
|
145 |
-
if temb_channels is not None:
|
146 |
-
if self.time_embedding_norm == "default":
|
147 |
-
time_emb_proj_out_channels = out_channels
|
148 |
-
elif self.time_embedding_norm == "scale_shift":
|
149 |
-
time_emb_proj_out_channels = out_channels * 2
|
150 |
-
else:
|
151 |
-
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
152 |
-
|
153 |
-
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
154 |
-
else:
|
155 |
-
self.time_emb_proj = None
|
156 |
-
|
157 |
-
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
158 |
-
self.dropout = torch.nn.Dropout(dropout)
|
159 |
-
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
160 |
-
|
161 |
-
if non_linearity == "swish":
|
162 |
-
self.nonlinearity = lambda x: F.silu(x)
|
163 |
-
elif non_linearity == "mish":
|
164 |
-
self.nonlinearity = Mish()
|
165 |
-
elif non_linearity == "silu":
|
166 |
-
self.nonlinearity = nn.SiLU()
|
167 |
-
|
168 |
-
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
169 |
-
|
170 |
-
self.conv_shortcut = None
|
171 |
-
if self.use_in_shortcut:
|
172 |
-
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
173 |
-
|
174 |
-
def forward(self, input_tensor, temb):
|
175 |
-
hidden_states = input_tensor
|
176 |
-
|
177 |
-
hidden_states = self.norm1(hidden_states)
|
178 |
-
hidden_states = self.nonlinearity(hidden_states)
|
179 |
-
|
180 |
-
hidden_states = self.conv1(hidden_states)
|
181 |
-
|
182 |
-
if temb is not None:
|
183 |
-
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
184 |
-
|
185 |
-
if temb is not None and self.time_embedding_norm == "default":
|
186 |
-
hidden_states = hidden_states + temb
|
187 |
-
|
188 |
-
hidden_states = self.norm2(hidden_states)
|
189 |
-
|
190 |
-
if temb is not None and self.time_embedding_norm == "scale_shift":
|
191 |
-
scale, shift = torch.chunk(temb, 2, dim=1)
|
192 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
193 |
-
|
194 |
-
hidden_states = self.nonlinearity(hidden_states)
|
195 |
-
|
196 |
-
hidden_states = self.dropout(hidden_states)
|
197 |
-
hidden_states = self.conv2(hidden_states)
|
198 |
-
|
199 |
-
if self.conv_shortcut is not None:
|
200 |
-
input_tensor = self.conv_shortcut(input_tensor)
|
201 |
-
|
202 |
-
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
203 |
-
|
204 |
-
return output_tensor
|
205 |
-
|
206 |
-
|
207 |
-
class Mish(torch.nn.Module):
|
208 |
-
def forward(self, hidden_states):
|
209 |
-
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/models/unet.py
DELETED
@@ -1,450 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
-
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import List, Optional, Tuple, Union
|
5 |
-
|
6 |
-
import os
|
7 |
-
import json
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.utils.checkpoint
|
12 |
-
|
13 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
-
from diffusers.modeling_utils import ModelMixin
|
15 |
-
from diffusers.utils import BaseOutput, logging
|
16 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
-
from .unet_blocks import (
|
18 |
-
CrossAttnDownBlock3D,
|
19 |
-
CrossAttnUpBlock3D,
|
20 |
-
DownBlock3D,
|
21 |
-
UNetMidBlock3DCrossAttn,
|
22 |
-
UpBlock3D,
|
23 |
-
get_down_block,
|
24 |
-
get_up_block,
|
25 |
-
)
|
26 |
-
from .resnet import InflatedConv3d
|
27 |
-
|
28 |
-
|
29 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class UNet3DConditionOutput(BaseOutput):
|
34 |
-
sample: torch.FloatTensor
|
35 |
-
|
36 |
-
|
37 |
-
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
38 |
-
_supports_gradient_checkpointing = True
|
39 |
-
|
40 |
-
@register_to_config
|
41 |
-
def __init__(
|
42 |
-
self,
|
43 |
-
sample_size: Optional[int] = None,
|
44 |
-
in_channels: int = 4,
|
45 |
-
out_channels: int = 4,
|
46 |
-
center_input_sample: bool = False,
|
47 |
-
flip_sin_to_cos: bool = True,
|
48 |
-
freq_shift: int = 0,
|
49 |
-
down_block_types: Tuple[str] = (
|
50 |
-
"CrossAttnDownBlock3D",
|
51 |
-
"CrossAttnDownBlock3D",
|
52 |
-
"CrossAttnDownBlock3D",
|
53 |
-
"DownBlock3D",
|
54 |
-
),
|
55 |
-
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
56 |
-
up_block_types: Tuple[str] = (
|
57 |
-
"UpBlock3D",
|
58 |
-
"CrossAttnUpBlock3D",
|
59 |
-
"CrossAttnUpBlock3D",
|
60 |
-
"CrossAttnUpBlock3D"
|
61 |
-
),
|
62 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
63 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
64 |
-
layers_per_block: int = 2,
|
65 |
-
downsample_padding: int = 1,
|
66 |
-
mid_block_scale_factor: float = 1,
|
67 |
-
act_fn: str = "silu",
|
68 |
-
norm_num_groups: int = 32,
|
69 |
-
norm_eps: float = 1e-5,
|
70 |
-
cross_attention_dim: int = 1280,
|
71 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
72 |
-
dual_cross_attention: bool = False,
|
73 |
-
use_linear_projection: bool = False,
|
74 |
-
class_embed_type: Optional[str] = None,
|
75 |
-
num_class_embeds: Optional[int] = None,
|
76 |
-
upcast_attention: bool = False,
|
77 |
-
resnet_time_scale_shift: str = "default",
|
78 |
-
):
|
79 |
-
super().__init__()
|
80 |
-
|
81 |
-
self.sample_size = sample_size
|
82 |
-
time_embed_dim = block_out_channels[0] * 4
|
83 |
-
|
84 |
-
# input
|
85 |
-
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
86 |
-
|
87 |
-
# time
|
88 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
89 |
-
timestep_input_dim = block_out_channels[0]
|
90 |
-
|
91 |
-
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
92 |
-
|
93 |
-
# class embedding
|
94 |
-
if class_embed_type is None and num_class_embeds is not None:
|
95 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
96 |
-
elif class_embed_type == "timestep":
|
97 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
98 |
-
elif class_embed_type == "identity":
|
99 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
100 |
-
else:
|
101 |
-
self.class_embedding = None
|
102 |
-
|
103 |
-
self.down_blocks = nn.ModuleList([])
|
104 |
-
self.mid_block = None
|
105 |
-
self.up_blocks = nn.ModuleList([])
|
106 |
-
|
107 |
-
if isinstance(only_cross_attention, bool):
|
108 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
109 |
-
|
110 |
-
if isinstance(attention_head_dim, int):
|
111 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
112 |
-
|
113 |
-
# down
|
114 |
-
output_channel = block_out_channels[0]
|
115 |
-
for i, down_block_type in enumerate(down_block_types):
|
116 |
-
input_channel = output_channel
|
117 |
-
output_channel = block_out_channels[i]
|
118 |
-
is_final_block = i == len(block_out_channels) - 1
|
119 |
-
|
120 |
-
down_block = get_down_block(
|
121 |
-
down_block_type,
|
122 |
-
num_layers=layers_per_block,
|
123 |
-
in_channels=input_channel,
|
124 |
-
out_channels=output_channel,
|
125 |
-
temb_channels=time_embed_dim,
|
126 |
-
add_downsample=not is_final_block,
|
127 |
-
resnet_eps=norm_eps,
|
128 |
-
resnet_act_fn=act_fn,
|
129 |
-
resnet_groups=norm_num_groups,
|
130 |
-
cross_attention_dim=cross_attention_dim,
|
131 |
-
attn_num_head_channels=attention_head_dim[i],
|
132 |
-
downsample_padding=downsample_padding,
|
133 |
-
dual_cross_attention=dual_cross_attention,
|
134 |
-
use_linear_projection=use_linear_projection,
|
135 |
-
only_cross_attention=only_cross_attention[i],
|
136 |
-
upcast_attention=upcast_attention,
|
137 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
138 |
-
)
|
139 |
-
self.down_blocks.append(down_block)
|
140 |
-
|
141 |
-
# mid
|
142 |
-
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
143 |
-
self.mid_block = UNetMidBlock3DCrossAttn(
|
144 |
-
in_channels=block_out_channels[-1],
|
145 |
-
temb_channels=time_embed_dim,
|
146 |
-
resnet_eps=norm_eps,
|
147 |
-
resnet_act_fn=act_fn,
|
148 |
-
output_scale_factor=mid_block_scale_factor,
|
149 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
150 |
-
cross_attention_dim=cross_attention_dim,
|
151 |
-
attn_num_head_channels=attention_head_dim[-1],
|
152 |
-
resnet_groups=norm_num_groups,
|
153 |
-
dual_cross_attention=dual_cross_attention,
|
154 |
-
use_linear_projection=use_linear_projection,
|
155 |
-
upcast_attention=upcast_attention,
|
156 |
-
)
|
157 |
-
else:
|
158 |
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
159 |
-
|
160 |
-
# count how many layers upsample the videos
|
161 |
-
self.num_upsamplers = 0
|
162 |
-
|
163 |
-
# up
|
164 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
165 |
-
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
166 |
-
only_cross_attention = list(reversed(only_cross_attention))
|
167 |
-
output_channel = reversed_block_out_channels[0]
|
168 |
-
for i, up_block_type in enumerate(up_block_types):
|
169 |
-
is_final_block = i == len(block_out_channels) - 1
|
170 |
-
|
171 |
-
prev_output_channel = output_channel
|
172 |
-
output_channel = reversed_block_out_channels[i]
|
173 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
174 |
-
|
175 |
-
# add upsample block for all BUT final layer
|
176 |
-
if not is_final_block:
|
177 |
-
add_upsample = True
|
178 |
-
self.num_upsamplers += 1
|
179 |
-
else:
|
180 |
-
add_upsample = False
|
181 |
-
|
182 |
-
up_block = get_up_block(
|
183 |
-
up_block_type,
|
184 |
-
num_layers=layers_per_block + 1,
|
185 |
-
in_channels=input_channel,
|
186 |
-
out_channels=output_channel,
|
187 |
-
prev_output_channel=prev_output_channel,
|
188 |
-
temb_channels=time_embed_dim,
|
189 |
-
add_upsample=add_upsample,
|
190 |
-
resnet_eps=norm_eps,
|
191 |
-
resnet_act_fn=act_fn,
|
192 |
-
resnet_groups=norm_num_groups,
|
193 |
-
cross_attention_dim=cross_attention_dim,
|
194 |
-
attn_num_head_channels=reversed_attention_head_dim[i],
|
195 |
-
dual_cross_attention=dual_cross_attention,
|
196 |
-
use_linear_projection=use_linear_projection,
|
197 |
-
only_cross_attention=only_cross_attention[i],
|
198 |
-
upcast_attention=upcast_attention,
|
199 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
200 |
-
)
|
201 |
-
self.up_blocks.append(up_block)
|
202 |
-
prev_output_channel = output_channel
|
203 |
-
|
204 |
-
# out
|
205 |
-
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
206 |
-
self.conv_act = nn.SiLU()
|
207 |
-
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
208 |
-
|
209 |
-
def set_attention_slice(self, slice_size):
|
210 |
-
r"""
|
211 |
-
Enable sliced attention computation.
|
212 |
-
|
213 |
-
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
214 |
-
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
215 |
-
|
216 |
-
Args:
|
217 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
218 |
-
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
219 |
-
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
220 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
221 |
-
must be a multiple of `slice_size`.
|
222 |
-
"""
|
223 |
-
sliceable_head_dims = []
|
224 |
-
|
225 |
-
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
226 |
-
if hasattr(module, "set_attention_slice"):
|
227 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
228 |
-
|
229 |
-
for child in module.children():
|
230 |
-
fn_recursive_retrieve_slicable_dims(child)
|
231 |
-
|
232 |
-
# retrieve number of attention layers
|
233 |
-
for module in self.children():
|
234 |
-
fn_recursive_retrieve_slicable_dims(module)
|
235 |
-
|
236 |
-
num_slicable_layers = len(sliceable_head_dims)
|
237 |
-
|
238 |
-
if slice_size == "auto":
|
239 |
-
# half the attention head size is usually a good trade-off between
|
240 |
-
# speed and memory
|
241 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
242 |
-
elif slice_size == "max":
|
243 |
-
# make smallest slice possible
|
244 |
-
slice_size = num_slicable_layers * [1]
|
245 |
-
|
246 |
-
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
247 |
-
|
248 |
-
if len(slice_size) != len(sliceable_head_dims):
|
249 |
-
raise ValueError(
|
250 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
251 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
252 |
-
)
|
253 |
-
|
254 |
-
for i in range(len(slice_size)):
|
255 |
-
size = slice_size[i]
|
256 |
-
dim = sliceable_head_dims[i]
|
257 |
-
if size is not None and size > dim:
|
258 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
259 |
-
|
260 |
-
# Recursively walk through all the children.
|
261 |
-
# Any children which exposes the set_attention_slice method
|
262 |
-
# gets the message
|
263 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
264 |
-
if hasattr(module, "set_attention_slice"):
|
265 |
-
module.set_attention_slice(slice_size.pop())
|
266 |
-
|
267 |
-
for child in module.children():
|
268 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
269 |
-
|
270 |
-
reversed_slice_size = list(reversed(slice_size))
|
271 |
-
for module in self.children():
|
272 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
273 |
-
|
274 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
275 |
-
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
276 |
-
module.gradient_checkpointing = value
|
277 |
-
|
278 |
-
def forward(
|
279 |
-
self,
|
280 |
-
sample: torch.FloatTensor,
|
281 |
-
timestep: Union[torch.Tensor, float, int],
|
282 |
-
encoder_hidden_states: torch.Tensor,
|
283 |
-
class_labels: Optional[torch.Tensor] = None,
|
284 |
-
attention_mask: Optional[torch.Tensor] = None,
|
285 |
-
return_dict: bool = True,
|
286 |
-
) -> Union[UNet3DConditionOutput, Tuple]:
|
287 |
-
r"""
|
288 |
-
Args:
|
289 |
-
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
290 |
-
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
291 |
-
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
292 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
293 |
-
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
294 |
-
|
295 |
-
Returns:
|
296 |
-
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
297 |
-
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
298 |
-
returning a tuple, the first element is the sample tensor.
|
299 |
-
"""
|
300 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
301 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
302 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
303 |
-
# on the fly if necessary.
|
304 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
305 |
-
|
306 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
307 |
-
forward_upsample_size = False
|
308 |
-
upsample_size = None
|
309 |
-
|
310 |
-
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
311 |
-
logger.info("Forward upsample size to force interpolation output size.")
|
312 |
-
forward_upsample_size = True
|
313 |
-
|
314 |
-
# prepare attention_mask
|
315 |
-
if attention_mask is not None:
|
316 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
317 |
-
attention_mask = attention_mask.unsqueeze(1)
|
318 |
-
|
319 |
-
# center input if necessary
|
320 |
-
if self.config.center_input_sample:
|
321 |
-
sample = 2 * sample - 1.0
|
322 |
-
|
323 |
-
# time
|
324 |
-
timesteps = timestep
|
325 |
-
if not torch.is_tensor(timesteps):
|
326 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
327 |
-
is_mps = sample.device.type == "mps"
|
328 |
-
if isinstance(timestep, float):
|
329 |
-
dtype = torch.float32 if is_mps else torch.float64
|
330 |
-
else:
|
331 |
-
dtype = torch.int32 if is_mps else torch.int64
|
332 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
333 |
-
elif len(timesteps.shape) == 0:
|
334 |
-
timesteps = timesteps[None].to(sample.device)
|
335 |
-
|
336 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
337 |
-
timesteps = timesteps.expand(sample.shape[0])
|
338 |
-
|
339 |
-
t_emb = self.time_proj(timesteps)
|
340 |
-
|
341 |
-
# timesteps does not contain any weights and will always return f32 tensors
|
342 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
343 |
-
# there might be better ways to encapsulate this.
|
344 |
-
t_emb = t_emb.to(dtype=self.dtype)
|
345 |
-
emb = self.time_embedding(t_emb)
|
346 |
-
|
347 |
-
if self.class_embedding is not None:
|
348 |
-
if class_labels is None:
|
349 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
350 |
-
|
351 |
-
if self.config.class_embed_type == "timestep":
|
352 |
-
class_labels = self.time_proj(class_labels)
|
353 |
-
|
354 |
-
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
355 |
-
emb = emb + class_emb
|
356 |
-
|
357 |
-
# pre-process
|
358 |
-
sample = self.conv_in(sample)
|
359 |
-
|
360 |
-
# down
|
361 |
-
down_block_res_samples = (sample,)
|
362 |
-
for downsample_block in self.down_blocks:
|
363 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
364 |
-
sample, res_samples = downsample_block(
|
365 |
-
hidden_states=sample,
|
366 |
-
temb=emb,
|
367 |
-
encoder_hidden_states=encoder_hidden_states,
|
368 |
-
attention_mask=attention_mask,
|
369 |
-
)
|
370 |
-
else:
|
371 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
372 |
-
|
373 |
-
down_block_res_samples += res_samples
|
374 |
-
|
375 |
-
# mid
|
376 |
-
sample = self.mid_block(
|
377 |
-
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
378 |
-
)
|
379 |
-
|
380 |
-
# up
|
381 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
382 |
-
is_final_block = i == len(self.up_blocks) - 1
|
383 |
-
|
384 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
385 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
386 |
-
|
387 |
-
# if we have not reached the final block and need to forward the
|
388 |
-
# upsample size, we do it here
|
389 |
-
if not is_final_block and forward_upsample_size:
|
390 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
391 |
-
|
392 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
393 |
-
sample = upsample_block(
|
394 |
-
hidden_states=sample,
|
395 |
-
temb=emb,
|
396 |
-
res_hidden_states_tuple=res_samples,
|
397 |
-
encoder_hidden_states=encoder_hidden_states,
|
398 |
-
upsample_size=upsample_size,
|
399 |
-
attention_mask=attention_mask,
|
400 |
-
)
|
401 |
-
else:
|
402 |
-
sample = upsample_block(
|
403 |
-
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
404 |
-
)
|
405 |
-
# post-process
|
406 |
-
sample = self.conv_norm_out(sample)
|
407 |
-
sample = self.conv_act(sample)
|
408 |
-
sample = self.conv_out(sample)
|
409 |
-
|
410 |
-
if not return_dict:
|
411 |
-
return (sample,)
|
412 |
-
|
413 |
-
return UNet3DConditionOutput(sample=sample)
|
414 |
-
|
415 |
-
@classmethod
|
416 |
-
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
|
417 |
-
if subfolder is not None:
|
418 |
-
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
419 |
-
|
420 |
-
config_file = os.path.join(pretrained_model_path, 'config.json')
|
421 |
-
if not os.path.isfile(config_file):
|
422 |
-
raise RuntimeError(f"{config_file} does not exist")
|
423 |
-
with open(config_file, "r") as f:
|
424 |
-
config = json.load(f)
|
425 |
-
config["_class_name"] = cls.__name__
|
426 |
-
config["down_block_types"] = [
|
427 |
-
"CrossAttnDownBlock3D",
|
428 |
-
"CrossAttnDownBlock3D",
|
429 |
-
"CrossAttnDownBlock3D",
|
430 |
-
"DownBlock3D"
|
431 |
-
]
|
432 |
-
config["up_block_types"] = [
|
433 |
-
"UpBlock3D",
|
434 |
-
"CrossAttnUpBlock3D",
|
435 |
-
"CrossAttnUpBlock3D",
|
436 |
-
"CrossAttnUpBlock3D"
|
437 |
-
]
|
438 |
-
|
439 |
-
from diffusers.utils import WEIGHTS_NAME
|
440 |
-
model = cls.from_config(config)
|
441 |
-
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
442 |
-
if not os.path.isfile(model_file):
|
443 |
-
raise RuntimeError(f"{model_file} does not exist")
|
444 |
-
state_dict = torch.load(model_file, map_location="cpu")
|
445 |
-
for k, v in model.state_dict().items():
|
446 |
-
if '_temp.' in k:
|
447 |
-
state_dict.update({k: v})
|
448 |
-
model.load_state_dict(state_dict)
|
449 |
-
|
450 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/models/unet_blocks.py
DELETED
@@ -1,588 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
|
6 |
-
from .attention import Transformer3DModel
|
7 |
-
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
-
|
9 |
-
|
10 |
-
def get_down_block(
|
11 |
-
down_block_type,
|
12 |
-
num_layers,
|
13 |
-
in_channels,
|
14 |
-
out_channels,
|
15 |
-
temb_channels,
|
16 |
-
add_downsample,
|
17 |
-
resnet_eps,
|
18 |
-
resnet_act_fn,
|
19 |
-
attn_num_head_channels,
|
20 |
-
resnet_groups=None,
|
21 |
-
cross_attention_dim=None,
|
22 |
-
downsample_padding=None,
|
23 |
-
dual_cross_attention=False,
|
24 |
-
use_linear_projection=False,
|
25 |
-
only_cross_attention=False,
|
26 |
-
upcast_attention=False,
|
27 |
-
resnet_time_scale_shift="default",
|
28 |
-
):
|
29 |
-
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
30 |
-
if down_block_type == "DownBlock3D":
|
31 |
-
return DownBlock3D(
|
32 |
-
num_layers=num_layers,
|
33 |
-
in_channels=in_channels,
|
34 |
-
out_channels=out_channels,
|
35 |
-
temb_channels=temb_channels,
|
36 |
-
add_downsample=add_downsample,
|
37 |
-
resnet_eps=resnet_eps,
|
38 |
-
resnet_act_fn=resnet_act_fn,
|
39 |
-
resnet_groups=resnet_groups,
|
40 |
-
downsample_padding=downsample_padding,
|
41 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
42 |
-
)
|
43 |
-
elif down_block_type == "CrossAttnDownBlock3D":
|
44 |
-
if cross_attention_dim is None:
|
45 |
-
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
46 |
-
return CrossAttnDownBlock3D(
|
47 |
-
num_layers=num_layers,
|
48 |
-
in_channels=in_channels,
|
49 |
-
out_channels=out_channels,
|
50 |
-
temb_channels=temb_channels,
|
51 |
-
add_downsample=add_downsample,
|
52 |
-
resnet_eps=resnet_eps,
|
53 |
-
resnet_act_fn=resnet_act_fn,
|
54 |
-
resnet_groups=resnet_groups,
|
55 |
-
downsample_padding=downsample_padding,
|
56 |
-
cross_attention_dim=cross_attention_dim,
|
57 |
-
attn_num_head_channels=attn_num_head_channels,
|
58 |
-
dual_cross_attention=dual_cross_attention,
|
59 |
-
use_linear_projection=use_linear_projection,
|
60 |
-
only_cross_attention=only_cross_attention,
|
61 |
-
upcast_attention=upcast_attention,
|
62 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
63 |
-
)
|
64 |
-
raise ValueError(f"{down_block_type} does not exist.")
|
65 |
-
|
66 |
-
|
67 |
-
def get_up_block(
|
68 |
-
up_block_type,
|
69 |
-
num_layers,
|
70 |
-
in_channels,
|
71 |
-
out_channels,
|
72 |
-
prev_output_channel,
|
73 |
-
temb_channels,
|
74 |
-
add_upsample,
|
75 |
-
resnet_eps,
|
76 |
-
resnet_act_fn,
|
77 |
-
attn_num_head_channels,
|
78 |
-
resnet_groups=None,
|
79 |
-
cross_attention_dim=None,
|
80 |
-
dual_cross_attention=False,
|
81 |
-
use_linear_projection=False,
|
82 |
-
only_cross_attention=False,
|
83 |
-
upcast_attention=False,
|
84 |
-
resnet_time_scale_shift="default",
|
85 |
-
):
|
86 |
-
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
87 |
-
if up_block_type == "UpBlock3D":
|
88 |
-
return UpBlock3D(
|
89 |
-
num_layers=num_layers,
|
90 |
-
in_channels=in_channels,
|
91 |
-
out_channels=out_channels,
|
92 |
-
prev_output_channel=prev_output_channel,
|
93 |
-
temb_channels=temb_channels,
|
94 |
-
add_upsample=add_upsample,
|
95 |
-
resnet_eps=resnet_eps,
|
96 |
-
resnet_act_fn=resnet_act_fn,
|
97 |
-
resnet_groups=resnet_groups,
|
98 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
-
)
|
100 |
-
elif up_block_type == "CrossAttnUpBlock3D":
|
101 |
-
if cross_attention_dim is None:
|
102 |
-
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
103 |
-
return CrossAttnUpBlock3D(
|
104 |
-
num_layers=num_layers,
|
105 |
-
in_channels=in_channels,
|
106 |
-
out_channels=out_channels,
|
107 |
-
prev_output_channel=prev_output_channel,
|
108 |
-
temb_channels=temb_channels,
|
109 |
-
add_upsample=add_upsample,
|
110 |
-
resnet_eps=resnet_eps,
|
111 |
-
resnet_act_fn=resnet_act_fn,
|
112 |
-
resnet_groups=resnet_groups,
|
113 |
-
cross_attention_dim=cross_attention_dim,
|
114 |
-
attn_num_head_channels=attn_num_head_channels,
|
115 |
-
dual_cross_attention=dual_cross_attention,
|
116 |
-
use_linear_projection=use_linear_projection,
|
117 |
-
only_cross_attention=only_cross_attention,
|
118 |
-
upcast_attention=upcast_attention,
|
119 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
120 |
-
)
|
121 |
-
raise ValueError(f"{up_block_type} does not exist.")
|
122 |
-
|
123 |
-
|
124 |
-
class UNetMidBlock3DCrossAttn(nn.Module):
|
125 |
-
def __init__(
|
126 |
-
self,
|
127 |
-
in_channels: int,
|
128 |
-
temb_channels: int,
|
129 |
-
dropout: float = 0.0,
|
130 |
-
num_layers: int = 1,
|
131 |
-
resnet_eps: float = 1e-6,
|
132 |
-
resnet_time_scale_shift: str = "default",
|
133 |
-
resnet_act_fn: str = "swish",
|
134 |
-
resnet_groups: int = 32,
|
135 |
-
resnet_pre_norm: bool = True,
|
136 |
-
attn_num_head_channels=1,
|
137 |
-
output_scale_factor=1.0,
|
138 |
-
cross_attention_dim=1280,
|
139 |
-
dual_cross_attention=False,
|
140 |
-
use_linear_projection=False,
|
141 |
-
upcast_attention=False,
|
142 |
-
):
|
143 |
-
super().__init__()
|
144 |
-
|
145 |
-
self.has_cross_attention = True
|
146 |
-
self.attn_num_head_channels = attn_num_head_channels
|
147 |
-
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
148 |
-
|
149 |
-
# there is always at least one resnet
|
150 |
-
resnets = [
|
151 |
-
ResnetBlock3D(
|
152 |
-
in_channels=in_channels,
|
153 |
-
out_channels=in_channels,
|
154 |
-
temb_channels=temb_channels,
|
155 |
-
eps=resnet_eps,
|
156 |
-
groups=resnet_groups,
|
157 |
-
dropout=dropout,
|
158 |
-
time_embedding_norm=resnet_time_scale_shift,
|
159 |
-
non_linearity=resnet_act_fn,
|
160 |
-
output_scale_factor=output_scale_factor,
|
161 |
-
pre_norm=resnet_pre_norm,
|
162 |
-
)
|
163 |
-
]
|
164 |
-
attentions = []
|
165 |
-
|
166 |
-
for _ in range(num_layers):
|
167 |
-
if dual_cross_attention:
|
168 |
-
raise NotImplementedError
|
169 |
-
attentions.append(
|
170 |
-
Transformer3DModel(
|
171 |
-
attn_num_head_channels,
|
172 |
-
in_channels // attn_num_head_channels,
|
173 |
-
in_channels=in_channels,
|
174 |
-
num_layers=1,
|
175 |
-
cross_attention_dim=cross_attention_dim,
|
176 |
-
norm_num_groups=resnet_groups,
|
177 |
-
use_linear_projection=use_linear_projection,
|
178 |
-
upcast_attention=upcast_attention,
|
179 |
-
)
|
180 |
-
)
|
181 |
-
resnets.append(
|
182 |
-
ResnetBlock3D(
|
183 |
-
in_channels=in_channels,
|
184 |
-
out_channels=in_channels,
|
185 |
-
temb_channels=temb_channels,
|
186 |
-
eps=resnet_eps,
|
187 |
-
groups=resnet_groups,
|
188 |
-
dropout=dropout,
|
189 |
-
time_embedding_norm=resnet_time_scale_shift,
|
190 |
-
non_linearity=resnet_act_fn,
|
191 |
-
output_scale_factor=output_scale_factor,
|
192 |
-
pre_norm=resnet_pre_norm,
|
193 |
-
)
|
194 |
-
)
|
195 |
-
|
196 |
-
self.attentions = nn.ModuleList(attentions)
|
197 |
-
self.resnets = nn.ModuleList(resnets)
|
198 |
-
|
199 |
-
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
200 |
-
hidden_states = self.resnets[0](hidden_states, temb)
|
201 |
-
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
202 |
-
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
203 |
-
hidden_states = resnet(hidden_states, temb)
|
204 |
-
|
205 |
-
return hidden_states
|
206 |
-
|
207 |
-
|
208 |
-
class CrossAttnDownBlock3D(nn.Module):
|
209 |
-
def __init__(
|
210 |
-
self,
|
211 |
-
in_channels: int,
|
212 |
-
out_channels: int,
|
213 |
-
temb_channels: int,
|
214 |
-
dropout: float = 0.0,
|
215 |
-
num_layers: int = 1,
|
216 |
-
resnet_eps: float = 1e-6,
|
217 |
-
resnet_time_scale_shift: str = "default",
|
218 |
-
resnet_act_fn: str = "swish",
|
219 |
-
resnet_groups: int = 32,
|
220 |
-
resnet_pre_norm: bool = True,
|
221 |
-
attn_num_head_channels=1,
|
222 |
-
cross_attention_dim=1280,
|
223 |
-
output_scale_factor=1.0,
|
224 |
-
downsample_padding=1,
|
225 |
-
add_downsample=True,
|
226 |
-
dual_cross_attention=False,
|
227 |
-
use_linear_projection=False,
|
228 |
-
only_cross_attention=False,
|
229 |
-
upcast_attention=False,
|
230 |
-
):
|
231 |
-
super().__init__()
|
232 |
-
resnets = []
|
233 |
-
attentions = []
|
234 |
-
|
235 |
-
self.has_cross_attention = True
|
236 |
-
self.attn_num_head_channels = attn_num_head_channels
|
237 |
-
|
238 |
-
for i in range(num_layers):
|
239 |
-
in_channels = in_channels if i == 0 else out_channels
|
240 |
-
resnets.append(
|
241 |
-
ResnetBlock3D(
|
242 |
-
in_channels=in_channels,
|
243 |
-
out_channels=out_channels,
|
244 |
-
temb_channels=temb_channels,
|
245 |
-
eps=resnet_eps,
|
246 |
-
groups=resnet_groups,
|
247 |
-
dropout=dropout,
|
248 |
-
time_embedding_norm=resnet_time_scale_shift,
|
249 |
-
non_linearity=resnet_act_fn,
|
250 |
-
output_scale_factor=output_scale_factor,
|
251 |
-
pre_norm=resnet_pre_norm,
|
252 |
-
)
|
253 |
-
)
|
254 |
-
if dual_cross_attention:
|
255 |
-
raise NotImplementedError
|
256 |
-
attentions.append(
|
257 |
-
Transformer3DModel(
|
258 |
-
attn_num_head_channels,
|
259 |
-
out_channels // attn_num_head_channels,
|
260 |
-
in_channels=out_channels,
|
261 |
-
num_layers=1,
|
262 |
-
cross_attention_dim=cross_attention_dim,
|
263 |
-
norm_num_groups=resnet_groups,
|
264 |
-
use_linear_projection=use_linear_projection,
|
265 |
-
only_cross_attention=only_cross_attention,
|
266 |
-
upcast_attention=upcast_attention,
|
267 |
-
)
|
268 |
-
)
|
269 |
-
self.attentions = nn.ModuleList(attentions)
|
270 |
-
self.resnets = nn.ModuleList(resnets)
|
271 |
-
|
272 |
-
if add_downsample:
|
273 |
-
self.downsamplers = nn.ModuleList(
|
274 |
-
[
|
275 |
-
Downsample3D(
|
276 |
-
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
277 |
-
)
|
278 |
-
]
|
279 |
-
)
|
280 |
-
else:
|
281 |
-
self.downsamplers = None
|
282 |
-
|
283 |
-
self.gradient_checkpointing = False
|
284 |
-
|
285 |
-
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
286 |
-
output_states = ()
|
287 |
-
|
288 |
-
for resnet, attn in zip(self.resnets, self.attentions):
|
289 |
-
if self.training and self.gradient_checkpointing:
|
290 |
-
|
291 |
-
def create_custom_forward(module, return_dict=None):
|
292 |
-
def custom_forward(*inputs):
|
293 |
-
if return_dict is not None:
|
294 |
-
return module(*inputs, return_dict=return_dict)
|
295 |
-
else:
|
296 |
-
return module(*inputs)
|
297 |
-
|
298 |
-
return custom_forward
|
299 |
-
|
300 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
301 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
302 |
-
create_custom_forward(attn, return_dict=False),
|
303 |
-
hidden_states,
|
304 |
-
encoder_hidden_states,
|
305 |
-
)[0]
|
306 |
-
else:
|
307 |
-
hidden_states = resnet(hidden_states, temb)
|
308 |
-
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
309 |
-
|
310 |
-
output_states += (hidden_states,)
|
311 |
-
|
312 |
-
if self.downsamplers is not None:
|
313 |
-
for downsampler in self.downsamplers:
|
314 |
-
hidden_states = downsampler(hidden_states)
|
315 |
-
|
316 |
-
output_states += (hidden_states,)
|
317 |
-
|
318 |
-
return hidden_states, output_states
|
319 |
-
|
320 |
-
|
321 |
-
class DownBlock3D(nn.Module):
|
322 |
-
def __init__(
|
323 |
-
self,
|
324 |
-
in_channels: int,
|
325 |
-
out_channels: int,
|
326 |
-
temb_channels: int,
|
327 |
-
dropout: float = 0.0,
|
328 |
-
num_layers: int = 1,
|
329 |
-
resnet_eps: float = 1e-6,
|
330 |
-
resnet_time_scale_shift: str = "default",
|
331 |
-
resnet_act_fn: str = "swish",
|
332 |
-
resnet_groups: int = 32,
|
333 |
-
resnet_pre_norm: bool = True,
|
334 |
-
output_scale_factor=1.0,
|
335 |
-
add_downsample=True,
|
336 |
-
downsample_padding=1,
|
337 |
-
):
|
338 |
-
super().__init__()
|
339 |
-
resnets = []
|
340 |
-
|
341 |
-
for i in range(num_layers):
|
342 |
-
in_channels = in_channels if i == 0 else out_channels
|
343 |
-
resnets.append(
|
344 |
-
ResnetBlock3D(
|
345 |
-
in_channels=in_channels,
|
346 |
-
out_channels=out_channels,
|
347 |
-
temb_channels=temb_channels,
|
348 |
-
eps=resnet_eps,
|
349 |
-
groups=resnet_groups,
|
350 |
-
dropout=dropout,
|
351 |
-
time_embedding_norm=resnet_time_scale_shift,
|
352 |
-
non_linearity=resnet_act_fn,
|
353 |
-
output_scale_factor=output_scale_factor,
|
354 |
-
pre_norm=resnet_pre_norm,
|
355 |
-
)
|
356 |
-
)
|
357 |
-
|
358 |
-
self.resnets = nn.ModuleList(resnets)
|
359 |
-
|
360 |
-
if add_downsample:
|
361 |
-
self.downsamplers = nn.ModuleList(
|
362 |
-
[
|
363 |
-
Downsample3D(
|
364 |
-
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
365 |
-
)
|
366 |
-
]
|
367 |
-
)
|
368 |
-
else:
|
369 |
-
self.downsamplers = None
|
370 |
-
|
371 |
-
self.gradient_checkpointing = False
|
372 |
-
|
373 |
-
def forward(self, hidden_states, temb=None):
|
374 |
-
output_states = ()
|
375 |
-
|
376 |
-
for resnet in self.resnets:
|
377 |
-
if self.training and self.gradient_checkpointing:
|
378 |
-
|
379 |
-
def create_custom_forward(module):
|
380 |
-
def custom_forward(*inputs):
|
381 |
-
return module(*inputs)
|
382 |
-
|
383 |
-
return custom_forward
|
384 |
-
|
385 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
386 |
-
else:
|
387 |
-
hidden_states = resnet(hidden_states, temb)
|
388 |
-
|
389 |
-
output_states += (hidden_states,)
|
390 |
-
|
391 |
-
if self.downsamplers is not None:
|
392 |
-
for downsampler in self.downsamplers:
|
393 |
-
hidden_states = downsampler(hidden_states)
|
394 |
-
|
395 |
-
output_states += (hidden_states,)
|
396 |
-
|
397 |
-
return hidden_states, output_states
|
398 |
-
|
399 |
-
|
400 |
-
class CrossAttnUpBlock3D(nn.Module):
|
401 |
-
def __init__(
|
402 |
-
self,
|
403 |
-
in_channels: int,
|
404 |
-
out_channels: int,
|
405 |
-
prev_output_channel: int,
|
406 |
-
temb_channels: int,
|
407 |
-
dropout: float = 0.0,
|
408 |
-
num_layers: int = 1,
|
409 |
-
resnet_eps: float = 1e-6,
|
410 |
-
resnet_time_scale_shift: str = "default",
|
411 |
-
resnet_act_fn: str = "swish",
|
412 |
-
resnet_groups: int = 32,
|
413 |
-
resnet_pre_norm: bool = True,
|
414 |
-
attn_num_head_channels=1,
|
415 |
-
cross_attention_dim=1280,
|
416 |
-
output_scale_factor=1.0,
|
417 |
-
add_upsample=True,
|
418 |
-
dual_cross_attention=False,
|
419 |
-
use_linear_projection=False,
|
420 |
-
only_cross_attention=False,
|
421 |
-
upcast_attention=False,
|
422 |
-
):
|
423 |
-
super().__init__()
|
424 |
-
resnets = []
|
425 |
-
attentions = []
|
426 |
-
|
427 |
-
self.has_cross_attention = True
|
428 |
-
self.attn_num_head_channels = attn_num_head_channels
|
429 |
-
|
430 |
-
for i in range(num_layers):
|
431 |
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
432 |
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
433 |
-
|
434 |
-
resnets.append(
|
435 |
-
ResnetBlock3D(
|
436 |
-
in_channels=resnet_in_channels + res_skip_channels,
|
437 |
-
out_channels=out_channels,
|
438 |
-
temb_channels=temb_channels,
|
439 |
-
eps=resnet_eps,
|
440 |
-
groups=resnet_groups,
|
441 |
-
dropout=dropout,
|
442 |
-
time_embedding_norm=resnet_time_scale_shift,
|
443 |
-
non_linearity=resnet_act_fn,
|
444 |
-
output_scale_factor=output_scale_factor,
|
445 |
-
pre_norm=resnet_pre_norm,
|
446 |
-
)
|
447 |
-
)
|
448 |
-
if dual_cross_attention:
|
449 |
-
raise NotImplementedError
|
450 |
-
attentions.append(
|
451 |
-
Transformer3DModel(
|
452 |
-
attn_num_head_channels,
|
453 |
-
out_channels // attn_num_head_channels,
|
454 |
-
in_channels=out_channels,
|
455 |
-
num_layers=1,
|
456 |
-
cross_attention_dim=cross_attention_dim,
|
457 |
-
norm_num_groups=resnet_groups,
|
458 |
-
use_linear_projection=use_linear_projection,
|
459 |
-
only_cross_attention=only_cross_attention,
|
460 |
-
upcast_attention=upcast_attention,
|
461 |
-
)
|
462 |
-
)
|
463 |
-
|
464 |
-
self.attentions = nn.ModuleList(attentions)
|
465 |
-
self.resnets = nn.ModuleList(resnets)
|
466 |
-
|
467 |
-
if add_upsample:
|
468 |
-
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
469 |
-
else:
|
470 |
-
self.upsamplers = None
|
471 |
-
|
472 |
-
self.gradient_checkpointing = False
|
473 |
-
|
474 |
-
def forward(
|
475 |
-
self,
|
476 |
-
hidden_states,
|
477 |
-
res_hidden_states_tuple,
|
478 |
-
temb=None,
|
479 |
-
encoder_hidden_states=None,
|
480 |
-
upsample_size=None,
|
481 |
-
attention_mask=None,
|
482 |
-
):
|
483 |
-
for resnet, attn in zip(self.resnets, self.attentions):
|
484 |
-
# pop res hidden states
|
485 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
486 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
487 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
488 |
-
|
489 |
-
if self.training and self.gradient_checkpointing:
|
490 |
-
|
491 |
-
def create_custom_forward(module, return_dict=None):
|
492 |
-
def custom_forward(*inputs):
|
493 |
-
if return_dict is not None:
|
494 |
-
return module(*inputs, return_dict=return_dict)
|
495 |
-
else:
|
496 |
-
return module(*inputs)
|
497 |
-
|
498 |
-
return custom_forward
|
499 |
-
|
500 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
501 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
502 |
-
create_custom_forward(attn, return_dict=False),
|
503 |
-
hidden_states,
|
504 |
-
encoder_hidden_states,
|
505 |
-
)[0]
|
506 |
-
else:
|
507 |
-
hidden_states = resnet(hidden_states, temb)
|
508 |
-
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
509 |
-
|
510 |
-
if self.upsamplers is not None:
|
511 |
-
for upsampler in self.upsamplers:
|
512 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
513 |
-
|
514 |
-
return hidden_states
|
515 |
-
|
516 |
-
|
517 |
-
class UpBlock3D(nn.Module):
|
518 |
-
def __init__(
|
519 |
-
self,
|
520 |
-
in_channels: int,
|
521 |
-
prev_output_channel: int,
|
522 |
-
out_channels: int,
|
523 |
-
temb_channels: int,
|
524 |
-
dropout: float = 0.0,
|
525 |
-
num_layers: int = 1,
|
526 |
-
resnet_eps: float = 1e-6,
|
527 |
-
resnet_time_scale_shift: str = "default",
|
528 |
-
resnet_act_fn: str = "swish",
|
529 |
-
resnet_groups: int = 32,
|
530 |
-
resnet_pre_norm: bool = True,
|
531 |
-
output_scale_factor=1.0,
|
532 |
-
add_upsample=True,
|
533 |
-
):
|
534 |
-
super().__init__()
|
535 |
-
resnets = []
|
536 |
-
|
537 |
-
for i in range(num_layers):
|
538 |
-
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
539 |
-
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
540 |
-
|
541 |
-
resnets.append(
|
542 |
-
ResnetBlock3D(
|
543 |
-
in_channels=resnet_in_channels + res_skip_channels,
|
544 |
-
out_channels=out_channels,
|
545 |
-
temb_channels=temb_channels,
|
546 |
-
eps=resnet_eps,
|
547 |
-
groups=resnet_groups,
|
548 |
-
dropout=dropout,
|
549 |
-
time_embedding_norm=resnet_time_scale_shift,
|
550 |
-
non_linearity=resnet_act_fn,
|
551 |
-
output_scale_factor=output_scale_factor,
|
552 |
-
pre_norm=resnet_pre_norm,
|
553 |
-
)
|
554 |
-
)
|
555 |
-
|
556 |
-
self.resnets = nn.ModuleList(resnets)
|
557 |
-
|
558 |
-
if add_upsample:
|
559 |
-
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
560 |
-
else:
|
561 |
-
self.upsamplers = None
|
562 |
-
|
563 |
-
self.gradient_checkpointing = False
|
564 |
-
|
565 |
-
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
566 |
-
for resnet in self.resnets:
|
567 |
-
# pop res hidden states
|
568 |
-
res_hidden_states = res_hidden_states_tuple[-1]
|
569 |
-
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
570 |
-
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
571 |
-
|
572 |
-
if self.training and self.gradient_checkpointing:
|
573 |
-
|
574 |
-
def create_custom_forward(module):
|
575 |
-
def custom_forward(*inputs):
|
576 |
-
return module(*inputs)
|
577 |
-
|
578 |
-
return custom_forward
|
579 |
-
|
580 |
-
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
581 |
-
else:
|
582 |
-
hidden_states = resnet(hidden_states, temb)
|
583 |
-
|
584 |
-
if self.upsamplers is not None:
|
585 |
-
for upsampler in self.upsamplers:
|
586 |
-
hidden_states = upsampler(hidden_states, upsample_size)
|
587 |
-
|
588 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/pipelines/__pycache__/pipeline_tuneavideo.cpython-38.pyc
DELETED
Binary file (11.5 kB)
|
|
Tune-A-Video/tuneavideo/pipelines/pipeline_tuneavideo.py
DELETED
@@ -1,407 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
-
|
3 |
-
import inspect
|
4 |
-
from typing import Callable, List, Optional, Union
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
|
10 |
-
from diffusers.utils import is_accelerate_available
|
11 |
-
from packaging import version
|
12 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
13 |
-
|
14 |
-
from diffusers.configuration_utils import FrozenDict
|
15 |
-
from diffusers.models import AutoencoderKL
|
16 |
-
from diffusers.pipeline_utils import DiffusionPipeline
|
17 |
-
from diffusers.schedulers import (
|
18 |
-
DDIMScheduler,
|
19 |
-
DPMSolverMultistepScheduler,
|
20 |
-
EulerAncestralDiscreteScheduler,
|
21 |
-
EulerDiscreteScheduler,
|
22 |
-
LMSDiscreteScheduler,
|
23 |
-
PNDMScheduler,
|
24 |
-
)
|
25 |
-
from diffusers.utils import deprecate, logging, BaseOutput
|
26 |
-
|
27 |
-
from einops import rearrange
|
28 |
-
|
29 |
-
from ..models.unet import UNet3DConditionModel
|
30 |
-
|
31 |
-
|
32 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
-
|
34 |
-
|
35 |
-
@dataclass
|
36 |
-
class TuneAVideoPipelineOutput(BaseOutput):
|
37 |
-
videos: Union[torch.Tensor, np.ndarray]
|
38 |
-
|
39 |
-
|
40 |
-
class TuneAVideoPipeline(DiffusionPipeline):
|
41 |
-
_optional_components = []
|
42 |
-
|
43 |
-
def __init__(
|
44 |
-
self,
|
45 |
-
vae: AutoencoderKL,
|
46 |
-
text_encoder: CLIPTextModel,
|
47 |
-
tokenizer: CLIPTokenizer,
|
48 |
-
unet: UNet3DConditionModel,
|
49 |
-
scheduler: Union[
|
50 |
-
DDIMScheduler,
|
51 |
-
PNDMScheduler,
|
52 |
-
LMSDiscreteScheduler,
|
53 |
-
EulerDiscreteScheduler,
|
54 |
-
EulerAncestralDiscreteScheduler,
|
55 |
-
DPMSolverMultistepScheduler,
|
56 |
-
],
|
57 |
-
):
|
58 |
-
super().__init__()
|
59 |
-
|
60 |
-
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
61 |
-
deprecation_message = (
|
62 |
-
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
63 |
-
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
64 |
-
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
65 |
-
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
66 |
-
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
67 |
-
" file"
|
68 |
-
)
|
69 |
-
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
70 |
-
new_config = dict(scheduler.config)
|
71 |
-
new_config["steps_offset"] = 1
|
72 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
73 |
-
|
74 |
-
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
75 |
-
deprecation_message = (
|
76 |
-
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
77 |
-
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
78 |
-
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
79 |
-
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
80 |
-
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
81 |
-
)
|
82 |
-
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
83 |
-
new_config = dict(scheduler.config)
|
84 |
-
new_config["clip_sample"] = False
|
85 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
86 |
-
|
87 |
-
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
88 |
-
version.parse(unet.config._diffusers_version).base_version
|
89 |
-
) < version.parse("0.9.0.dev0")
|
90 |
-
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
91 |
-
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
92 |
-
deprecation_message = (
|
93 |
-
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
94 |
-
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
95 |
-
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
96 |
-
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
97 |
-
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
98 |
-
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
99 |
-
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
100 |
-
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
101 |
-
" the `unet/config.json` file"
|
102 |
-
)
|
103 |
-
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
104 |
-
new_config = dict(unet.config)
|
105 |
-
new_config["sample_size"] = 64
|
106 |
-
unet._internal_dict = FrozenDict(new_config)
|
107 |
-
|
108 |
-
self.register_modules(
|
109 |
-
vae=vae,
|
110 |
-
text_encoder=text_encoder,
|
111 |
-
tokenizer=tokenizer,
|
112 |
-
unet=unet,
|
113 |
-
scheduler=scheduler,
|
114 |
-
)
|
115 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
116 |
-
|
117 |
-
def enable_vae_slicing(self):
|
118 |
-
self.vae.enable_slicing()
|
119 |
-
|
120 |
-
def disable_vae_slicing(self):
|
121 |
-
self.vae.disable_slicing()
|
122 |
-
|
123 |
-
def enable_sequential_cpu_offload(self, gpu_id=0):
|
124 |
-
if is_accelerate_available():
|
125 |
-
from accelerate import cpu_offload
|
126 |
-
else:
|
127 |
-
raise ImportError("Please install accelerate via `pip install accelerate`")
|
128 |
-
|
129 |
-
device = torch.device(f"cuda:{gpu_id}")
|
130 |
-
|
131 |
-
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
132 |
-
if cpu_offloaded_model is not None:
|
133 |
-
cpu_offload(cpu_offloaded_model, device)
|
134 |
-
|
135 |
-
|
136 |
-
@property
|
137 |
-
def _execution_device(self):
|
138 |
-
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
139 |
-
return self.device
|
140 |
-
for module in self.unet.modules():
|
141 |
-
if (
|
142 |
-
hasattr(module, "_hf_hook")
|
143 |
-
and hasattr(module._hf_hook, "execution_device")
|
144 |
-
and module._hf_hook.execution_device is not None
|
145 |
-
):
|
146 |
-
return torch.device(module._hf_hook.execution_device)
|
147 |
-
return self.device
|
148 |
-
|
149 |
-
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
150 |
-
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
151 |
-
|
152 |
-
text_inputs = self.tokenizer(
|
153 |
-
prompt,
|
154 |
-
padding="max_length",
|
155 |
-
max_length=self.tokenizer.model_max_length,
|
156 |
-
truncation=True,
|
157 |
-
return_tensors="pt",
|
158 |
-
)
|
159 |
-
text_input_ids = text_inputs.input_ids
|
160 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
161 |
-
|
162 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
163 |
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
164 |
-
logger.warning(
|
165 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
166 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
167 |
-
)
|
168 |
-
|
169 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
170 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
171 |
-
else:
|
172 |
-
attention_mask = None
|
173 |
-
|
174 |
-
text_embeddings = self.text_encoder(
|
175 |
-
text_input_ids.to(device),
|
176 |
-
attention_mask=attention_mask,
|
177 |
-
)
|
178 |
-
text_embeddings = text_embeddings[0]
|
179 |
-
|
180 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
181 |
-
bs_embed, seq_len, _ = text_embeddings.shape
|
182 |
-
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
183 |
-
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
184 |
-
|
185 |
-
# get unconditional embeddings for classifier free guidance
|
186 |
-
if do_classifier_free_guidance:
|
187 |
-
uncond_tokens: List[str]
|
188 |
-
if negative_prompt is None:
|
189 |
-
uncond_tokens = [""] * batch_size
|
190 |
-
elif type(prompt) is not type(negative_prompt):
|
191 |
-
raise TypeError(
|
192 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
193 |
-
f" {type(prompt)}."
|
194 |
-
)
|
195 |
-
elif isinstance(negative_prompt, str):
|
196 |
-
uncond_tokens = [negative_prompt]
|
197 |
-
elif batch_size != len(negative_prompt):
|
198 |
-
raise ValueError(
|
199 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
200 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
201 |
-
" the batch size of `prompt`."
|
202 |
-
)
|
203 |
-
else:
|
204 |
-
uncond_tokens = negative_prompt
|
205 |
-
|
206 |
-
max_length = text_input_ids.shape[-1]
|
207 |
-
uncond_input = self.tokenizer(
|
208 |
-
uncond_tokens,
|
209 |
-
padding="max_length",
|
210 |
-
max_length=max_length,
|
211 |
-
truncation=True,
|
212 |
-
return_tensors="pt",
|
213 |
-
)
|
214 |
-
|
215 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
216 |
-
attention_mask = uncond_input.attention_mask.to(device)
|
217 |
-
else:
|
218 |
-
attention_mask = None
|
219 |
-
|
220 |
-
uncond_embeddings = self.text_encoder(
|
221 |
-
uncond_input.input_ids.to(device),
|
222 |
-
attention_mask=attention_mask,
|
223 |
-
)
|
224 |
-
uncond_embeddings = uncond_embeddings[0]
|
225 |
-
|
226 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
227 |
-
seq_len = uncond_embeddings.shape[1]
|
228 |
-
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
229 |
-
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
230 |
-
|
231 |
-
# For classifier free guidance, we need to do two forward passes.
|
232 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
233 |
-
# to avoid doing two forward passes
|
234 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
235 |
-
|
236 |
-
return text_embeddings
|
237 |
-
|
238 |
-
def decode_latents(self, latents):
|
239 |
-
video_length = latents.shape[2]
|
240 |
-
latents = 1 / 0.18215 * latents
|
241 |
-
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
242 |
-
video = self.vae.decode(latents).sample
|
243 |
-
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
244 |
-
video = (video / 2 + 0.5).clamp(0, 1)
|
245 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
246 |
-
video = video.cpu().float().numpy()
|
247 |
-
return video
|
248 |
-
|
249 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
250 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
251 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
252 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
253 |
-
# and should be between [0, 1]
|
254 |
-
|
255 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
256 |
-
extra_step_kwargs = {}
|
257 |
-
if accepts_eta:
|
258 |
-
extra_step_kwargs["eta"] = eta
|
259 |
-
|
260 |
-
# check if the scheduler accepts generator
|
261 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
262 |
-
if accepts_generator:
|
263 |
-
extra_step_kwargs["generator"] = generator
|
264 |
-
return extra_step_kwargs
|
265 |
-
|
266 |
-
def check_inputs(self, prompt, height, width, callback_steps):
|
267 |
-
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
268 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
269 |
-
|
270 |
-
if height % 8 != 0 or width % 8 != 0:
|
271 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
272 |
-
|
273 |
-
if (callback_steps is None) or (
|
274 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
275 |
-
):
|
276 |
-
raise ValueError(
|
277 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
278 |
-
f" {type(callback_steps)}."
|
279 |
-
)
|
280 |
-
|
281 |
-
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
282 |
-
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
283 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
284 |
-
raise ValueError(
|
285 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
286 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
287 |
-
)
|
288 |
-
|
289 |
-
if latents is None:
|
290 |
-
rand_device = "cpu" if device.type == "mps" else device
|
291 |
-
|
292 |
-
if isinstance(generator, list):
|
293 |
-
shape = (1,) + shape[1:]
|
294 |
-
latents = [
|
295 |
-
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
296 |
-
for i in range(batch_size)
|
297 |
-
]
|
298 |
-
latents = torch.cat(latents, dim=0).to(device)
|
299 |
-
else:
|
300 |
-
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
301 |
-
else:
|
302 |
-
if latents.shape != shape:
|
303 |
-
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
304 |
-
latents = latents.to(device)
|
305 |
-
|
306 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
307 |
-
latents = latents * self.scheduler.init_noise_sigma
|
308 |
-
return latents
|
309 |
-
|
310 |
-
@torch.no_grad()
|
311 |
-
def __call__(
|
312 |
-
self,
|
313 |
-
prompt: Union[str, List[str]],
|
314 |
-
video_length: Optional[int],
|
315 |
-
height: Optional[int] = None,
|
316 |
-
width: Optional[int] = None,
|
317 |
-
num_inference_steps: int = 50,
|
318 |
-
guidance_scale: float = 7.5,
|
319 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
320 |
-
num_videos_per_prompt: Optional[int] = 1,
|
321 |
-
eta: float = 0.0,
|
322 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
323 |
-
latents: Optional[torch.FloatTensor] = None,
|
324 |
-
output_type: Optional[str] = "tensor",
|
325 |
-
return_dict: bool = True,
|
326 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
327 |
-
callback_steps: Optional[int] = 1,
|
328 |
-
**kwargs,
|
329 |
-
):
|
330 |
-
# Default height and width to unet
|
331 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
332 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
333 |
-
|
334 |
-
# Check inputs. Raise error if not correct
|
335 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
336 |
-
|
337 |
-
# Define call parameters
|
338 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
339 |
-
device = self._execution_device
|
340 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
341 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
342 |
-
# corresponds to doing no classifier free guidance.
|
343 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
344 |
-
|
345 |
-
# Encode input prompt
|
346 |
-
text_embeddings = self._encode_prompt(
|
347 |
-
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
348 |
-
)
|
349 |
-
|
350 |
-
# Prepare timesteps
|
351 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
352 |
-
timesteps = self.scheduler.timesteps
|
353 |
-
|
354 |
-
# Prepare latent variables
|
355 |
-
num_channels_latents = self.unet.in_channels
|
356 |
-
latents = self.prepare_latents(
|
357 |
-
batch_size * num_videos_per_prompt,
|
358 |
-
num_channels_latents,
|
359 |
-
video_length,
|
360 |
-
height,
|
361 |
-
width,
|
362 |
-
text_embeddings.dtype,
|
363 |
-
device,
|
364 |
-
generator,
|
365 |
-
latents,
|
366 |
-
)
|
367 |
-
latents_dtype = latents.dtype
|
368 |
-
|
369 |
-
# Prepare extra step kwargs.
|
370 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
371 |
-
|
372 |
-
# Denoising loop
|
373 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
374 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
375 |
-
for i, t in enumerate(timesteps):
|
376 |
-
# expand the latents if we are doing classifier free guidance
|
377 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
378 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
379 |
-
|
380 |
-
# predict the noise residual
|
381 |
-
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
|
382 |
-
|
383 |
-
# perform guidance
|
384 |
-
if do_classifier_free_guidance:
|
385 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
386 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
387 |
-
|
388 |
-
# compute the previous noisy sample x_t -> x_t-1
|
389 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
390 |
-
|
391 |
-
# call the callback, if provided
|
392 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
393 |
-
progress_bar.update()
|
394 |
-
if callback is not None and i % callback_steps == 0:
|
395 |
-
callback(i, t, latents)
|
396 |
-
|
397 |
-
# Post-processing
|
398 |
-
video = self.decode_latents(latents)
|
399 |
-
|
400 |
-
# Convert to tensor
|
401 |
-
if output_type == "tensor":
|
402 |
-
video = torch.from_numpy(video)
|
403 |
-
|
404 |
-
if not return_dict:
|
405 |
-
return video
|
406 |
-
|
407 |
-
return TuneAVideoPipelineOutput(videos=video)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tune-A-Video/tuneavideo/util.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import imageio
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torchvision
|
7 |
-
|
8 |
-
from einops import rearrange
|
9 |
-
|
10 |
-
|
11 |
-
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=3):
|
12 |
-
videos = rearrange(videos, "b c t h w -> t b c h w")
|
13 |
-
outputs = []
|
14 |
-
for x in videos:
|
15 |
-
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
16 |
-
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
17 |
-
if rescale:
|
18 |
-
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
19 |
-
x = (x * 255).numpy().astype(np.uint8)
|
20 |
-
outputs.append(x)
|
21 |
-
|
22 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
23 |
-
imageio.mimsave(path, outputs, fps=fps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_fatezero.py
CHANGED
@@ -16,16 +16,16 @@ def merge_config_then_run(
|
|
16 |
enhance_words_value,
|
17 |
num_steps,
|
18 |
guidance_scale,
|
19 |
-
user_input_video,
|
20 |
|
21 |
# Temporal and spatial crop of the video
|
22 |
-
start_sample_frame,
|
23 |
-
n_sample_frame,
|
24 |
-
stride,
|
25 |
-
left_crop,
|
26 |
-
right_crop,
|
27 |
-
top_crop,
|
28 |
-
bottom_crop,
|
29 |
):
|
30 |
# , ] = inputs
|
31 |
default_edit_config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_steps.yaml'
|
|
|
16 |
enhance_words_value,
|
17 |
num_steps,
|
18 |
guidance_scale,
|
19 |
+
user_input_video=None,
|
20 |
|
21 |
# Temporal and spatial crop of the video
|
22 |
+
start_sample_frame=0,
|
23 |
+
n_sample_frame=8,
|
24 |
+
stride=1,
|
25 |
+
left_crop=0,
|
26 |
+
right_crop=0,
|
27 |
+
top_crop=0,
|
28 |
+
bottom_crop=0,
|
29 |
):
|
30 |
# , ] = inputs
|
31 |
default_edit_config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_steps.yaml'
|
patch
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
diff --git a/train_tuneavideo.py b/train_tuneavideo.py
|
2 |
-
index 66d51b2..86b2a5d 100644
|
3 |
-
--- a/train_tuneavideo.py
|
4 |
-
+++ b/train_tuneavideo.py
|
5 |
-
@@ -94,8 +94,8 @@ def main(
|
6 |
-
|
7 |
-
# Handle the output folder creation
|
8 |
-
if accelerator.is_main_process:
|
9 |
-
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
10 |
-
- output_dir = os.path.join(output_dir, now)
|
11 |
-
+ #now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
12 |
-
+ #output_dir = os.path.join(output_dir, now)
|
13 |
-
os.makedirs(output_dir, exist_ok=True)
|
14 |
-
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|