chenyangqi commited on
Commit
8214cae
·
1 Parent(s): 0c86f09

rm tune-a-video, add default config for video crop

Browse files
Dockerfile CHANGED
@@ -53,7 +53,6 @@ COPY --chown=1000 . ${HOME}/app
53
  RUN ls -a
54
  RUN cd ./FateZero/ckpt && bash download.sh
55
  RUN cd ./FateZero/data && bash download.sh
56
- RUN cd Tune-A-Video && patch -p1 < ../patch
57
  ENV PYTHONPATH=${HOME}/app \
58
  PYTHONUNBUFFERED=1 \
59
  GRADIO_ALLOW_FLAGGING=never \
 
53
  RUN ls -a
54
  RUN cd ./FateZero/ckpt && bash download.sh
55
  RUN cd ./FateZero/data && bash download.sh
 
56
  ENV PYTHONPATH=${HOME}/app \
57
  PYTHONUNBUFFERED=1 \
58
  GRADIO_ALLOW_FLAGGING=never \
FateZero/test_fatezero.py CHANGED
@@ -260,7 +260,7 @@ def run(config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_step
260
  if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
261
  test(config=config, **Omegadict)
262
  print('test finished')
263
- return '/home/cqiaa/diffusion/hugging_face/Tune-A-Video-inference/FateZero/result/low_resource_teaser/jeep_watercolor_ddim_10_steps_230327-200651/sample/step_0_0_0.mp4'
264
  else:
265
  # Go through all ckpt if possible
266
  checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
 
260
  if 'unet' in os.listdir(Omegadict['pretrained_model_path']):
261
  test(config=config, **Omegadict)
262
  print('test finished')
263
+ return None
264
  else:
265
  # Go through all ckpt if possible
266
  checkpoint_list = sorted(glob(os.path.join(Omegadict['pretrained_model_path'], 'checkpoint_*')))
Tune-A-Video/README.md DELETED
@@ -1,119 +0,0 @@
1
- # Tune-A-Video
2
-
3
- This repository is the official implementation of [Tune-A-Video](https://arxiv.org/abs/2212.11565).
4
-
5
- **[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)**
6
- <br/>
7
- [Jay Zhangjie Wu](https://zhangjiewu.github.io/),
8
- [Yixiao Ge](https://geyixiao.com/),
9
- [Xintao Wang](https://xinntao.github.io/),
10
- [Stan Weixian Lei](),
11
- [Yuchao Gu](https://ycgu.site/),
12
- [Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/),
13
- [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
14
- [Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en),
15
- [Mike Zheng Shou](https://sites.google.com/view/showlab)
16
- <br/>
17
-
18
- [Project Page](https://tuneavideo.github.io/) | [arXiv](https://arxiv.org/abs/2212.11565)
19
-
20
- ## Setup
21
-
22
- ### Requirements
23
-
24
- ```shell
25
- pip install -r requirements.txt
26
- ```
27
-
28
- Installing [xformers](https://github.com/facebookresearch/xformers) is highly recommended for more efficiency and speed on GPUs.
29
- To enable xformers, set `enable_xformers_memory_efficient_attention=True` (default).
30
-
31
- ### Weights
32
-
33
- You can download the pre-trained [Stable Diffusion](https://arxiv.org/abs/2112.10752) models
34
- (e.g., [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)):
35
-
36
- ```shell
37
- git lfs install
38
- git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
39
- ```
40
-
41
- Alternatively, you can use a personalized [DreamBooth](https://arxiv.org/abs/2208.12242) model (e.g., [mr-potato-head](https://huggingface.co/sd-dreambooth-library/mr-potato-head)):
42
- ```shell
43
- git lfs install
44
- git clone https://huggingface.co/sd-dreambooth-library/mr-potato-head
45
- ```
46
-
47
- ## Training
48
-
49
- To fine-tune the text-to-image diffusion models for text-to-video generation, run this command:
50
-
51
- ```shell
52
- accelerate launch train_tuneavideo.py --config="configs/man-surfing.yaml"
53
- ```
54
-
55
- ## Inference
56
-
57
- Once the training is done, run inference:
58
-
59
- ```python
60
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
61
- from tuneavideo.models.unet import UNet3DConditionModel
62
- from tuneavideo.util import save_videos_grid
63
- import torch
64
-
65
- model_id = "path-to-your-trained-model"
66
- unet = UNet3DConditionModel.from_pretrained(model_id, subfolder='unet', torch_dtype=torch.float16).to('cuda')
67
- pipe = TuneAVideoPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", unet=unet, torch_dtype=torch.float16).to("cuda")
68
-
69
- prompt = "a panda is surfing"
70
- video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos
71
-
72
- save_videos_grid(video, f"{prompt}.gif")
73
- ```
74
-
75
- ## Results
76
-
77
- ### Fine-tuning on Stable Diffusion
78
-
79
- <table width="100%" align="center">
80
- <tr>
81
- <td><img src="https://tuneavideo.github.io/static/results/man-surfing/train.gif"></td>
82
- <td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/panda-surfing.gif"></td>
83
- <td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/ironman-desert.gif"></td>
84
- <td><img src="https://tuneavideo.github.io/static/results/repo/stablediffusion/raccoon-cartoon.gif"></td>
85
- </tr>
86
- <tr>
87
- <td width=25% style="text-align:center;color:gray;">[Training] a man is surfing.</td>
88
- <td width=25% style="text-align:center;">a panda is surfing.</td>
89
- <td width=25% style="text-align:center;">Iron Man is surfing in the desert.</td>
90
- <td width=25% style="text-align:center;">a raccoon is surfing, cartoon style.</td>
91
- </tr>
92
- </table>
93
-
94
- ### Fine-tuning on DreamBooth
95
-
96
- <table width="100%" align="center">
97
- <tr>
98
- <td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/mr-potato-head.png"></td>
99
- <td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/pink-hat.gif"></td>
100
- <td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/potato-sunglasses.gif"></td>
101
- <td><img src="https://tuneavideo.github.io/static/results/repo/dreambooth/potato-forest.gif"></td>
102
- </tr>
103
- <tr>
104
- <td width=25% style="text-align:center;color:gray;">sks mr potato head.</td>
105
- <td width=25% style="text-align:center;">sks mr potato head, wearing a pink hat, is surfing.</td>
106
- <td width=25% style="text-align:center;">sks mr potato head, wearing sunglasses, is surfing.</td>
107
- <td width=25% style="text-align:center;">sks mr potato head is surfing in the forest.</td>
108
- </tr>
109
- </table>
110
-
111
- ## BibTeX
112
- ```
113
- @article{wu2022tuneavideo,
114
- title={Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation},
115
- author={Wu, Jay Zhangjie and Ge, Yixiao and Wang, Xintao and Lei, Stan Weixian and Gu, Yuchao and Hsu, Wynne and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
116
- journal={arXiv preprint arXiv:2212.11565},
117
- year={2022}
118
- }
119
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/configs/man-surfing.yaml DELETED
@@ -1,39 +0,0 @@
1
- pretrained_model_path: "./checkpoints/stable-diffusion-v1-4"
2
- output_dir: "./outputs/man-surfing_lr3e-5_seed33"
3
-
4
- train_data:
5
- video_path: "data/man-surfing.mp4"
6
- prompt: "a man is surfing"
7
- n_sample_frames: 8
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "a panda is surfing"
16
- - "a boy, wearing a birthday hat, is surfing"
17
- - "a raccoon is surfing, cartoon style"
18
- - "Iron Man is surfing in the desert"
19
- video_length: 8
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 7.5
24
-
25
- learning_rate: 3e-5
26
- train_batch_size: 1
27
- max_train_steps: 300
28
- checkpointing_steps: 1000
29
- validation_steps: 100
30
- trainable_modules:
31
- - "attn1.to_q"
32
- - "attn2.to_q"
33
- - "attn_temp"
34
-
35
- seed: 33
36
- mixed_precision: fp16
37
- use_8bit_adam: False
38
- gradient_checkpointing: True
39
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/configs/mr-potato-head.yaml DELETED
@@ -1,39 +0,0 @@
1
- pretrained_model_path: "./checkpoints/mr-potato-head"
2
- output_dir: "./outputs/mr-potato-head_lr3e-5_seed33"
3
-
4
- train_data:
5
- video_path: "data/man-surfing.mp4"
6
- prompt: "a man is surfing"
7
- n_sample_frames: 8
8
- width: 512
9
- height: 512
10
- sample_start_idx: 0
11
- sample_frame_rate: 1
12
-
13
- validation_data:
14
- prompts:
15
- - "sks mr potato head is surfing"
16
- - "sks mr potato head, wearing a pink hat, is surfing"
17
- - "sks mr potato head, wearing funny sunglasses, is surfing"
18
- - "sks mr potato head is surfing in the forest"
19
- video_length: 8
20
- width: 512
21
- height: 512
22
- num_inference_steps: 50
23
- guidance_scale: 7.5
24
-
25
- learning_rate: 3e-5
26
- train_batch_size: 1
27
- max_train_steps: 500
28
- checkpointing_steps: 1000
29
- validation_steps: 100
30
- trainable_modules:
31
- - "attn1.to_q"
32
- - "attn2.to_q"
33
- - "attn_temp"
34
-
35
- seed: 33
36
- mixed_precision: fp16
37
- use_8bit_adam: False
38
- gradient_checkpointing: True
39
- enable_xformers_memory_efficient_attention: True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/data/man-surfing.mp4 DELETED
Binary file (786 kB)
 
Tune-A-Video/requirements.txt DELETED
@@ -1,13 +0,0 @@
1
- torch==1.12.1
2
- torchvision==0.13.1
3
- diffusers[torch]==0.11.1
4
- transformers>=4.25.1
5
- bitsandbytes==0.35.4
6
- decord==0.6.0
7
- accelerate
8
- tensorboard
9
- modelcards
10
- omegaconf
11
- einops
12
- imageio
13
- ftfy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/train_tuneavideo.py DELETED
@@ -1,352 +0,0 @@
1
- import argparse
2
- import datetime
3
- import logging
4
- import inspect
5
- import math
6
- import os
7
- from typing import Dict, Optional, Tuple
8
- from omegaconf import OmegaConf
9
-
10
- import torch
11
- import torch.nn.functional as F
12
- import torch.utils.checkpoint
13
-
14
- import diffusers
15
- import transformers
16
- from accelerate import Accelerator
17
- from accelerate.logging import get_logger
18
- from accelerate.utils import set_seed
19
- from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
20
- from diffusers.optimization import get_scheduler
21
- from diffusers.utils import check_min_version
22
- from diffusers.utils.import_utils import is_xformers_available
23
- from tqdm.auto import tqdm
24
- from transformers import CLIPTextModel, CLIPTokenizer
25
-
26
- from tuneavideo.models.unet import UNet3DConditionModel
27
- from tuneavideo.data.dataset import TuneAVideoDataset
28
- from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
29
- from tuneavideo.util import save_videos_grid
30
- from einops import rearrange
31
-
32
-
33
- # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
34
- check_min_version("0.10.0.dev0")
35
-
36
- logger = get_logger(__name__, log_level="INFO")
37
-
38
-
39
- def main(
40
- pretrained_model_path: str,
41
- output_dir: str,
42
- train_data: Dict,
43
- validation_data: Dict,
44
- validation_steps: int = 100,
45
- trainable_modules: Tuple[str] = (
46
- "attn1.to_q",
47
- "attn2.to_q",
48
- "attn_temp",
49
- ),
50
- train_batch_size: int = 1,
51
- max_train_steps: int = 500,
52
- learning_rate: float = 3e-5,
53
- scale_lr: bool = False,
54
- lr_scheduler: str = "constant",
55
- lr_warmup_steps: int = 0,
56
- adam_beta1: float = 0.9,
57
- adam_beta2: float = 0.999,
58
- adam_weight_decay: float = 1e-2,
59
- adam_epsilon: float = 1e-08,
60
- max_grad_norm: float = 1.0,
61
- gradient_accumulation_steps: int = 1,
62
- gradient_checkpointing: bool = True,
63
- checkpointing_steps: int = 500,
64
- resume_from_checkpoint: Optional[str] = None,
65
- mixed_precision: Optional[str] = "fp16",
66
- use_8bit_adam: bool = False,
67
- enable_xformers_memory_efficient_attention: bool = True,
68
- seed: Optional[int] = None,
69
- ):
70
- *_, config = inspect.getargvalues(inspect.currentframe())
71
-
72
- accelerator = Accelerator(
73
- gradient_accumulation_steps=gradient_accumulation_steps,
74
- mixed_precision=mixed_precision,
75
- )
76
-
77
- # Make one log on every process with the configuration for debugging.
78
- logging.basicConfig(
79
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
80
- datefmt="%m/%d/%Y %H:%M:%S",
81
- level=logging.INFO,
82
- )
83
- logger.info(accelerator.state, main_process_only=False)
84
- if accelerator.is_local_main_process:
85
- transformers.utils.logging.set_verbosity_warning()
86
- diffusers.utils.logging.set_verbosity_info()
87
- else:
88
- transformers.utils.logging.set_verbosity_error()
89
- diffusers.utils.logging.set_verbosity_error()
90
-
91
- # If passed along, set the training seed now.
92
- if seed is not None:
93
- set_seed(seed)
94
-
95
- # Handle the output folder creation
96
- if accelerator.is_main_process:
97
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
98
- output_dir = os.path.join(output_dir, now)
99
- os.makedirs(output_dir, exist_ok=True)
100
- OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
101
-
102
- # Load scheduler, tokenizer and models.
103
- noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
104
- tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
105
- text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
106
- vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
107
- unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
108
-
109
- # Freeze vae and text_encoder
110
- vae.requires_grad_(False)
111
- text_encoder.requires_grad_(False)
112
-
113
- unet.requires_grad_(False)
114
- for name, module in unet.named_modules():
115
- if name.endswith(tuple(trainable_modules)):
116
- for params in module.parameters():
117
- params.requires_grad = True
118
-
119
- if enable_xformers_memory_efficient_attention:
120
- if is_xformers_available():
121
- unet.enable_xformers_memory_efficient_attention()
122
- else:
123
- raise ValueError("xformers is not available. Make sure it is installed correctly")
124
-
125
- if gradient_checkpointing:
126
- unet.enable_gradient_checkpointing()
127
-
128
- if scale_lr:
129
- learning_rate = (
130
- learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
131
- )
132
-
133
- # Initialize the optimizer
134
- if use_8bit_adam:
135
- try:
136
- import bitsandbytes as bnb
137
- except ImportError:
138
- raise ImportError(
139
- "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
140
- )
141
-
142
- optimizer_cls = bnb.optim.AdamW8bit
143
- else:
144
- optimizer_cls = torch.optim.AdamW
145
-
146
- optimizer = optimizer_cls(
147
- unet.parameters(),
148
- lr=learning_rate,
149
- betas=(adam_beta1, adam_beta2),
150
- weight_decay=adam_weight_decay,
151
- eps=adam_epsilon,
152
- )
153
-
154
- # Get the training dataset
155
- train_dataset = TuneAVideoDataset(**train_data)
156
-
157
- # Preprocessing the dataset
158
- train_dataset.prompt_ids = tokenizer(
159
- train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
160
- ).input_ids[0]
161
-
162
- # DataLoaders creation:
163
- train_dataloader = torch.utils.data.DataLoader(
164
- train_dataset, batch_size=train_batch_size
165
- )
166
-
167
- # Get the validation pipeline
168
- validation_pipeline = TuneAVideoPipeline(
169
- vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
170
- scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
171
- )
172
-
173
- # Scheduler
174
- lr_scheduler = get_scheduler(
175
- lr_scheduler,
176
- optimizer=optimizer,
177
- num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
178
- num_training_steps=max_train_steps * gradient_accumulation_steps,
179
- )
180
-
181
- # Prepare everything with our `accelerator`.
182
- unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
183
- unet, optimizer, train_dataloader, lr_scheduler
184
- )
185
-
186
- # For mixed precision training we cast the text_encoder and vae weights to half-precision
187
- # as these models are only used for inference, keeping weights in full precision is not required.
188
- weight_dtype = torch.float32
189
- if accelerator.mixed_precision == "fp16":
190
- weight_dtype = torch.float16
191
- elif accelerator.mixed_precision == "bf16":
192
- weight_dtype = torch.bfloat16
193
-
194
- # Move text_encode and vae to gpu and cast to weight_dtype
195
- text_encoder.to(accelerator.device, dtype=weight_dtype)
196
- vae.to(accelerator.device, dtype=weight_dtype)
197
-
198
- # We need to recalculate our total training steps as the size of the training dataloader may have changed.
199
- num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
200
- # Afterwards we recalculate our number of training epochs
201
- num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
202
-
203
- # We need to initialize the trackers we use, and also store our configuration.
204
- # The trackers initializes automatically on the main process.
205
- if accelerator.is_main_process:
206
- accelerator.init_trackers("text2video-fine-tune")
207
-
208
- # Train!
209
- total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
210
-
211
- logger.info("***** Running training *****")
212
- logger.info(f" Num examples = {len(train_dataset)}")
213
- logger.info(f" Num Epochs = {num_train_epochs}")
214
- logger.info(f" Instantaneous batch size per device = {train_batch_size}")
215
- logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
216
- logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
217
- logger.info(f" Total optimization steps = {max_train_steps}")
218
- global_step = 0
219
- first_epoch = 0
220
-
221
- # Potentially load in the weights and states from a previous save
222
- if resume_from_checkpoint:
223
- if resume_from_checkpoint != "latest":
224
- path = os.path.basename(resume_from_checkpoint)
225
- else:
226
- # Get the most recent checkpoint
227
- dirs = os.listdir(output_dir)
228
- dirs = [d for d in dirs if d.startswith("checkpoint")]
229
- dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
230
- path = dirs[-1]
231
- accelerator.print(f"Resuming from checkpoint {path}")
232
- accelerator.load_state(os.path.join(output_dir, path))
233
- global_step = int(path.split("-")[1])
234
-
235
- first_epoch = global_step // num_update_steps_per_epoch
236
- resume_step = global_step % num_update_steps_per_epoch
237
-
238
- # Only show the progress bar once on each machine.
239
- progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
240
- progress_bar.set_description("Steps")
241
-
242
- for epoch in range(first_epoch, num_train_epochs):
243
- unet.train()
244
- train_loss = 0.0
245
- for step, batch in enumerate(train_dataloader):
246
- # Skip steps until we reach the resumed step
247
- if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
248
- if step % gradient_accumulation_steps == 0:
249
- progress_bar.update(1)
250
- continue
251
-
252
- with accelerator.accumulate(unet):
253
- # Convert videos to latent space
254
- pixel_values = batch["pixel_values"].to(weight_dtype)
255
- video_length = pixel_values.shape[1]
256
- pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
257
- latents = vae.encode(pixel_values).latent_dist.sample()
258
- latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
259
- latents = latents * 0.18215
260
-
261
- # Sample noise that we'll add to the latents
262
- noise = torch.randn_like(latents)
263
- bsz = latents.shape[0]
264
- # Sample a random timestep for each video
265
- timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
266
- timesteps = timesteps.long()
267
-
268
- # Add noise to the latents according to the noise magnitude at each timestep
269
- # (this is the forward diffusion process)
270
- noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
271
-
272
- # Get the text embedding for conditioning
273
- encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
274
-
275
- # Get the target for loss depending on the prediction type
276
- if noise_scheduler.prediction_type == "epsilon":
277
- target = noise
278
- elif noise_scheduler.prediction_type == "v_prediction":
279
- target = noise_scheduler.get_velocity(latents, noise, timesteps)
280
- else:
281
- raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
282
-
283
- # Predict the noise residual and compute loss
284
- model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
285
- loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
286
-
287
- # Gather the losses across all processes for logging (if we use distributed training).
288
- avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
289
- train_loss += avg_loss.item() / gradient_accumulation_steps
290
-
291
- # Backpropagate
292
- accelerator.backward(loss)
293
- if accelerator.sync_gradients:
294
- accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
295
- optimizer.step()
296
- lr_scheduler.step()
297
- optimizer.zero_grad()
298
-
299
- # Checks if the accelerator has performed an optimization step behind the scenes
300
- if accelerator.sync_gradients:
301
- progress_bar.update(1)
302
- global_step += 1
303
- accelerator.log({"train_loss": train_loss}, step=global_step)
304
- train_loss = 0.0
305
-
306
- if global_step % checkpointing_steps == 0:
307
- if accelerator.is_main_process:
308
- save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
309
- accelerator.save_state(save_path)
310
- logger.info(f"Saved state to {save_path}")
311
-
312
- if global_step % validation_steps == 0:
313
- if accelerator.is_main_process:
314
- save_path = os.path.join(output_dir, f"samples/sample-{global_step}.gif")
315
- samples = []
316
- generator = torch.Generator(device=latents.device)
317
- generator.manual_seed(seed)
318
- for idx, prompt in enumerate(validation_data.prompts):
319
- sample = validation_pipeline(prompt, generator=generator, **validation_data).videos
320
- save_videos_grid(sample, os.path.join(output_dir, f"samples/sample-{global_step}/{prompt}.gif"))
321
- samples.append(sample)
322
- samples = torch.concat(samples)
323
- save_videos_grid(samples, save_path)
324
- logger.info(f"Saved samples to {save_path}")
325
-
326
- logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
327
- progress_bar.set_postfix(**logs)
328
-
329
- if global_step >= max_train_steps:
330
- break
331
-
332
- # Create the pipeline using the trained modules and save it.
333
- accelerator.wait_for_everyone()
334
- if accelerator.is_main_process:
335
- unet = accelerator.unwrap_model(unet)
336
- pipeline = TuneAVideoPipeline.from_pretrained(
337
- pretrained_model_path,
338
- text_encoder=text_encoder,
339
- vae=vae,
340
- unet=unet,
341
- )
342
- pipeline.save_pretrained(output_dir)
343
-
344
- accelerator.end_training()
345
-
346
-
347
- if __name__ == "__main__":
348
- parser = argparse.ArgumentParser()
349
- parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
350
- args = parser.parse_args()
351
-
352
- main(**OmegaConf.load(args.config))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/data/dataset.py DELETED
@@ -1,44 +0,0 @@
1
- import decord
2
- decord.bridge.set_bridge('torch')
3
-
4
- from torch.utils.data import Dataset
5
- from einops import rearrange
6
-
7
-
8
- class TuneAVideoDataset(Dataset):
9
- def __init__(
10
- self,
11
- video_path: str,
12
- prompt: str,
13
- width: int = 512,
14
- height: int = 512,
15
- n_sample_frames: int = 8,
16
- sample_start_idx: int = 0,
17
- sample_frame_rate: int = 1,
18
- ):
19
- self.video_path = video_path
20
- self.prompt = prompt
21
- self.prompt_ids = None
22
-
23
- self.width = width
24
- self.height = height
25
- self.n_sample_frames = n_sample_frames
26
- self.sample_start_idx = sample_start_idx
27
- self.sample_frame_rate = sample_frame_rate
28
-
29
- def __len__(self):
30
- return 1
31
-
32
- def __getitem__(self, index):
33
- # load and sample video frames
34
- vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
35
- sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
36
- video = vr.get_batch(sample_index)
37
- video = rearrange(video, "f h w c -> f c h w")
38
-
39
- example = {
40
- "pixel_values": (video / 127.5 - 1.0),
41
- "prompt_ids": self.prompt_ids
42
- }
43
-
44
- return example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/__pycache__/attention.cpython-38.pyc DELETED
Binary file (7.74 kB)
 
Tune-A-Video/tuneavideo/models/__pycache__/resnet.cpython-38.pyc DELETED
Binary file (5.13 kB)
 
Tune-A-Video/tuneavideo/models/__pycache__/unet.cpython-38.pyc DELETED
Binary file (11.1 kB)
 
Tune-A-Video/tuneavideo/models/__pycache__/unet_blocks.cpython-38.pyc DELETED
Binary file (10.5 kB)
 
Tune-A-Video/tuneavideo/models/attention.py DELETED
@@ -1,328 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
-
3
- from dataclasses import dataclass
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- from torch import nn
9
-
10
- from diffusers.configuration_utils import ConfigMixin, register_to_config
11
- from diffusers.modeling_utils import ModelMixin
12
- from diffusers.utils import BaseOutput
13
- from diffusers.utils.import_utils import is_xformers_available
14
- from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
-
16
- from einops import rearrange, repeat
17
-
18
-
19
- @dataclass
20
- class Transformer3DModelOutput(BaseOutput):
21
- sample: torch.FloatTensor
22
-
23
-
24
- if is_xformers_available():
25
- import xformers
26
- import xformers.ops
27
- else:
28
- xformers = None
29
-
30
-
31
- class Transformer3DModel(ModelMixin, ConfigMixin):
32
- @register_to_config
33
- def __init__(
34
- self,
35
- num_attention_heads: int = 16,
36
- attention_head_dim: int = 88,
37
- in_channels: Optional[int] = None,
38
- num_layers: int = 1,
39
- dropout: float = 0.0,
40
- norm_num_groups: int = 32,
41
- cross_attention_dim: Optional[int] = None,
42
- attention_bias: bool = False,
43
- activation_fn: str = "geglu",
44
- num_embeds_ada_norm: Optional[int] = None,
45
- use_linear_projection: bool = False,
46
- only_cross_attention: bool = False,
47
- upcast_attention: bool = False,
48
- ):
49
- super().__init__()
50
- self.use_linear_projection = use_linear_projection
51
- self.num_attention_heads = num_attention_heads
52
- self.attention_head_dim = attention_head_dim
53
- inner_dim = num_attention_heads * attention_head_dim
54
-
55
- # Define input layers
56
- self.in_channels = in_channels
57
-
58
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
- if use_linear_projection:
60
- self.proj_in = nn.Linear(in_channels, inner_dim)
61
- else:
62
- self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
-
64
- # Define transformers blocks
65
- self.transformer_blocks = nn.ModuleList(
66
- [
67
- BasicTransformerBlock(
68
- inner_dim,
69
- num_attention_heads,
70
- attention_head_dim,
71
- dropout=dropout,
72
- cross_attention_dim=cross_attention_dim,
73
- activation_fn=activation_fn,
74
- num_embeds_ada_norm=num_embeds_ada_norm,
75
- attention_bias=attention_bias,
76
- only_cross_attention=only_cross_attention,
77
- upcast_attention=upcast_attention,
78
- )
79
- for d in range(num_layers)
80
- ]
81
- )
82
-
83
- # 4. Define output layers
84
- if use_linear_projection:
85
- self.proj_out = nn.Linear(in_channels, inner_dim)
86
- else:
87
- self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
-
89
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
- # Input
91
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
- video_length = hidden_states.shape[2]
93
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
- encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
-
96
- batch, channel, height, weight = hidden_states.shape
97
- residual = hidden_states
98
-
99
- hidden_states = self.norm(hidden_states)
100
- if not self.use_linear_projection:
101
- hidden_states = self.proj_in(hidden_states)
102
- inner_dim = hidden_states.shape[1]
103
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
- else:
105
- inner_dim = hidden_states.shape[1]
106
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
- hidden_states = self.proj_in(hidden_states)
108
-
109
- # Blocks
110
- for block in self.transformer_blocks:
111
- hidden_states = block(
112
- hidden_states,
113
- encoder_hidden_states=encoder_hidden_states,
114
- timestep=timestep,
115
- video_length=video_length
116
- )
117
-
118
- # Output
119
- if not self.use_linear_projection:
120
- hidden_states = (
121
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
- )
123
- hidden_states = self.proj_out(hidden_states)
124
- else:
125
- hidden_states = self.proj_out(hidden_states)
126
- hidden_states = (
127
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
- )
129
-
130
- output = hidden_states + residual
131
-
132
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
- if not return_dict:
134
- return (output,)
135
-
136
- return Transformer3DModelOutput(sample=output)
137
-
138
-
139
- class BasicTransformerBlock(nn.Module):
140
- def __init__(
141
- self,
142
- dim: int,
143
- num_attention_heads: int,
144
- attention_head_dim: int,
145
- dropout=0.0,
146
- cross_attention_dim: Optional[int] = None,
147
- activation_fn: str = "geglu",
148
- num_embeds_ada_norm: Optional[int] = None,
149
- attention_bias: bool = False,
150
- only_cross_attention: bool = False,
151
- upcast_attention: bool = False,
152
- ):
153
- super().__init__()
154
- self.only_cross_attention = only_cross_attention
155
- self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
-
157
- # SC-Attn
158
- self.attn1 = SparseCausalAttention(
159
- query_dim=dim,
160
- heads=num_attention_heads,
161
- dim_head=attention_head_dim,
162
- dropout=dropout,
163
- bias=attention_bias,
164
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
165
- upcast_attention=upcast_attention,
166
- )
167
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
168
-
169
- # Cross-Attn
170
- if cross_attention_dim is not None:
171
- self.attn2 = CrossAttention(
172
- query_dim=dim,
173
- cross_attention_dim=cross_attention_dim,
174
- heads=num_attention_heads,
175
- dim_head=attention_head_dim,
176
- dropout=dropout,
177
- bias=attention_bias,
178
- upcast_attention=upcast_attention,
179
- )
180
- else:
181
- self.attn2 = None
182
-
183
- if cross_attention_dim is not None:
184
- self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
185
- else:
186
- self.norm2 = None
187
-
188
- # Feed-forward
189
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
190
- self.norm3 = nn.LayerNorm(dim)
191
-
192
- # Temp-Attn
193
- self.attn_temp = CrossAttention(
194
- query_dim=dim,
195
- heads=num_attention_heads,
196
- dim_head=attention_head_dim,
197
- dropout=dropout,
198
- bias=attention_bias,
199
- upcast_attention=upcast_attention,
200
- )
201
- nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
202
- self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
203
-
204
- def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
205
- if not is_xformers_available():
206
- print("Here is how to install it")
207
- raise ModuleNotFoundError(
208
- "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
209
- " xformers",
210
- name="xformers",
211
- )
212
- elif not torch.cuda.is_available():
213
- raise ValueError(
214
- "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
215
- " available for GPU "
216
- )
217
- else:
218
- try:
219
- # Make sure we can run the memory efficient attention
220
- _ = xformers.ops.memory_efficient_attention(
221
- torch.randn((1, 2, 40), device="cuda"),
222
- torch.randn((1, 2, 40), device="cuda"),
223
- torch.randn((1, 2, 40), device="cuda"),
224
- )
225
- except Exception as e:
226
- raise e
227
- self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
228
- if self.attn2 is not None:
229
- self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
230
- # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
231
-
232
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
233
- # SparseCausal-Attention
234
- norm_hidden_states = (
235
- self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
236
- )
237
-
238
- if self.only_cross_attention:
239
- hidden_states = (
240
- self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
241
- )
242
- else:
243
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
244
-
245
- if self.attn2 is not None:
246
- # Cross-Attention
247
- norm_hidden_states = (
248
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
249
- )
250
- hidden_states = (
251
- self.attn2(
252
- norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
253
- )
254
- + hidden_states
255
- )
256
-
257
- # Feed-forward
258
- hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
259
-
260
- # Temporal-Attention
261
- d = hidden_states.shape[1]
262
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
263
- norm_hidden_states = (
264
- self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
265
- )
266
- hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
267
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
268
-
269
- return hidden_states
270
-
271
-
272
- class SparseCausalAttention(CrossAttention):
273
- def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
274
- batch_size, sequence_length, _ = hidden_states.shape
275
-
276
- encoder_hidden_states = encoder_hidden_states
277
-
278
- if self.group_norm is not None:
279
- hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
280
-
281
- query = self.to_q(hidden_states)
282
- dim = query.shape[-1]
283
- query = self.reshape_heads_to_batch_dim(query)
284
-
285
- if self.added_kv_proj_dim is not None:
286
- raise NotImplementedError
287
-
288
- encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
289
- key = self.to_k(encoder_hidden_states)
290
- value = self.to_v(encoder_hidden_states)
291
-
292
- former_frame_index = torch.arange(video_length) - 1
293
- former_frame_index[0] = 0
294
-
295
- key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
296
- key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
297
- key = rearrange(key, "b f d c -> (b f) d c")
298
-
299
- value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
300
- value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
301
- value = rearrange(value, "b f d c -> (b f) d c")
302
-
303
- key = self.reshape_heads_to_batch_dim(key)
304
- value = self.reshape_heads_to_batch_dim(value)
305
-
306
- if attention_mask is not None:
307
- if attention_mask.shape[-1] != query.shape[1]:
308
- target_length = query.shape[1]
309
- attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
- attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
-
312
- # attention, what we cannot get enough of
313
- if self._use_memory_efficient_attention_xformers:
314
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
- # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
- hidden_states = hidden_states.to(query.dtype)
317
- else:
318
- if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
- hidden_states = self._attention(query, key, value, attention_mask)
320
- else:
321
- hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
-
323
- # linear proj
324
- hidden_states = self.to_out[0](hidden_states)
325
-
326
- # dropout
327
- hidden_states = self.to_out[1](hidden_states)
328
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/resnet.py DELETED
@@ -1,209 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
-
3
- import torch
4
- import torch.nn as nn
5
- import torch.nn.functional as F
6
-
7
- from einops import rearrange
8
-
9
-
10
- class InflatedConv3d(nn.Conv2d):
11
- def forward(self, x):
12
- video_length = x.shape[2]
13
-
14
- x = rearrange(x, "b c f h w -> (b f) c h w")
15
- x = super().forward(x)
16
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
-
18
- return x
19
-
20
-
21
- class Upsample3D(nn.Module):
22
- def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
- super().__init__()
24
- self.channels = channels
25
- self.out_channels = out_channels or channels
26
- self.use_conv = use_conv
27
- self.use_conv_transpose = use_conv_transpose
28
- self.name = name
29
-
30
- conv = None
31
- if use_conv_transpose:
32
- raise NotImplementedError
33
- elif use_conv:
34
- conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
-
36
- if name == "conv":
37
- self.conv = conv
38
- else:
39
- self.Conv2d_0 = conv
40
-
41
- def forward(self, hidden_states, output_size=None):
42
- assert hidden_states.shape[1] == self.channels
43
-
44
- if self.use_conv_transpose:
45
- raise NotImplementedError
46
-
47
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
- dtype = hidden_states.dtype
49
- if dtype == torch.bfloat16:
50
- hidden_states = hidden_states.to(torch.float32)
51
-
52
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
- if hidden_states.shape[0] >= 64:
54
- hidden_states = hidden_states.contiguous()
55
-
56
- # if `output_size` is passed we force the interpolation output
57
- # size and do not make use of `scale_factor=2`
58
- if output_size is None:
59
- hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
- else:
61
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
-
63
- # If the input is bfloat16, we cast back to bfloat16
64
- if dtype == torch.bfloat16:
65
- hidden_states = hidden_states.to(dtype)
66
-
67
- if self.use_conv:
68
- if self.name == "conv":
69
- hidden_states = self.conv(hidden_states)
70
- else:
71
- hidden_states = self.Conv2d_0(hidden_states)
72
-
73
- return hidden_states
74
-
75
-
76
- class Downsample3D(nn.Module):
77
- def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
- super().__init__()
79
- self.channels = channels
80
- self.out_channels = out_channels or channels
81
- self.use_conv = use_conv
82
- self.padding = padding
83
- stride = 2
84
- self.name = name
85
-
86
- if use_conv:
87
- conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
- else:
89
- raise NotImplementedError
90
-
91
- if name == "conv":
92
- self.Conv2d_0 = conv
93
- self.conv = conv
94
- elif name == "Conv2d_0":
95
- self.conv = conv
96
- else:
97
- self.conv = conv
98
-
99
- def forward(self, hidden_states):
100
- assert hidden_states.shape[1] == self.channels
101
- if self.use_conv and self.padding == 0:
102
- raise NotImplementedError
103
-
104
- assert hidden_states.shape[1] == self.channels
105
- hidden_states = self.conv(hidden_states)
106
-
107
- return hidden_states
108
-
109
-
110
- class ResnetBlock3D(nn.Module):
111
- def __init__(
112
- self,
113
- *,
114
- in_channels,
115
- out_channels=None,
116
- conv_shortcut=False,
117
- dropout=0.0,
118
- temb_channels=512,
119
- groups=32,
120
- groups_out=None,
121
- pre_norm=True,
122
- eps=1e-6,
123
- non_linearity="swish",
124
- time_embedding_norm="default",
125
- output_scale_factor=1.0,
126
- use_in_shortcut=None,
127
- ):
128
- super().__init__()
129
- self.pre_norm = pre_norm
130
- self.pre_norm = True
131
- self.in_channels = in_channels
132
- out_channels = in_channels if out_channels is None else out_channels
133
- self.out_channels = out_channels
134
- self.use_conv_shortcut = conv_shortcut
135
- self.time_embedding_norm = time_embedding_norm
136
- self.output_scale_factor = output_scale_factor
137
-
138
- if groups_out is None:
139
- groups_out = groups
140
-
141
- self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
-
143
- self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
-
145
- if temb_channels is not None:
146
- if self.time_embedding_norm == "default":
147
- time_emb_proj_out_channels = out_channels
148
- elif self.time_embedding_norm == "scale_shift":
149
- time_emb_proj_out_channels = out_channels * 2
150
- else:
151
- raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
-
153
- self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
- else:
155
- self.time_emb_proj = None
156
-
157
- self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
- self.dropout = torch.nn.Dropout(dropout)
159
- self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
-
161
- if non_linearity == "swish":
162
- self.nonlinearity = lambda x: F.silu(x)
163
- elif non_linearity == "mish":
164
- self.nonlinearity = Mish()
165
- elif non_linearity == "silu":
166
- self.nonlinearity = nn.SiLU()
167
-
168
- self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
-
170
- self.conv_shortcut = None
171
- if self.use_in_shortcut:
172
- self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
-
174
- def forward(self, input_tensor, temb):
175
- hidden_states = input_tensor
176
-
177
- hidden_states = self.norm1(hidden_states)
178
- hidden_states = self.nonlinearity(hidden_states)
179
-
180
- hidden_states = self.conv1(hidden_states)
181
-
182
- if temb is not None:
183
- temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
-
185
- if temb is not None and self.time_embedding_norm == "default":
186
- hidden_states = hidden_states + temb
187
-
188
- hidden_states = self.norm2(hidden_states)
189
-
190
- if temb is not None and self.time_embedding_norm == "scale_shift":
191
- scale, shift = torch.chunk(temb, 2, dim=1)
192
- hidden_states = hidden_states * (1 + scale) + shift
193
-
194
- hidden_states = self.nonlinearity(hidden_states)
195
-
196
- hidden_states = self.dropout(hidden_states)
197
- hidden_states = self.conv2(hidden_states)
198
-
199
- if self.conv_shortcut is not None:
200
- input_tensor = self.conv_shortcut(input_tensor)
201
-
202
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
-
204
- return output_tensor
205
-
206
-
207
- class Mish(torch.nn.Module):
208
- def forward(self, hidden_states):
209
- return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/unet.py DELETED
@@ -1,450 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
-
3
- from dataclasses import dataclass
4
- from typing import List, Optional, Tuple, Union
5
-
6
- import os
7
- import json
8
-
9
- import torch
10
- import torch.nn as nn
11
- import torch.utils.checkpoint
12
-
13
- from diffusers.configuration_utils import ConfigMixin, register_to_config
14
- from diffusers.modeling_utils import ModelMixin
15
- from diffusers.utils import BaseOutput, logging
16
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
- from .unet_blocks import (
18
- CrossAttnDownBlock3D,
19
- CrossAttnUpBlock3D,
20
- DownBlock3D,
21
- UNetMidBlock3DCrossAttn,
22
- UpBlock3D,
23
- get_down_block,
24
- get_up_block,
25
- )
26
- from .resnet import InflatedConv3d
27
-
28
-
29
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
-
31
-
32
- @dataclass
33
- class UNet3DConditionOutput(BaseOutput):
34
- sample: torch.FloatTensor
35
-
36
-
37
- class UNet3DConditionModel(ModelMixin, ConfigMixin):
38
- _supports_gradient_checkpointing = True
39
-
40
- @register_to_config
41
- def __init__(
42
- self,
43
- sample_size: Optional[int] = None,
44
- in_channels: int = 4,
45
- out_channels: int = 4,
46
- center_input_sample: bool = False,
47
- flip_sin_to_cos: bool = True,
48
- freq_shift: int = 0,
49
- down_block_types: Tuple[str] = (
50
- "CrossAttnDownBlock3D",
51
- "CrossAttnDownBlock3D",
52
- "CrossAttnDownBlock3D",
53
- "DownBlock3D",
54
- ),
55
- mid_block_type: str = "UNetMidBlock3DCrossAttn",
56
- up_block_types: Tuple[str] = (
57
- "UpBlock3D",
58
- "CrossAttnUpBlock3D",
59
- "CrossAttnUpBlock3D",
60
- "CrossAttnUpBlock3D"
61
- ),
62
- only_cross_attention: Union[bool, Tuple[bool]] = False,
63
- block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
64
- layers_per_block: int = 2,
65
- downsample_padding: int = 1,
66
- mid_block_scale_factor: float = 1,
67
- act_fn: str = "silu",
68
- norm_num_groups: int = 32,
69
- norm_eps: float = 1e-5,
70
- cross_attention_dim: int = 1280,
71
- attention_head_dim: Union[int, Tuple[int]] = 8,
72
- dual_cross_attention: bool = False,
73
- use_linear_projection: bool = False,
74
- class_embed_type: Optional[str] = None,
75
- num_class_embeds: Optional[int] = None,
76
- upcast_attention: bool = False,
77
- resnet_time_scale_shift: str = "default",
78
- ):
79
- super().__init__()
80
-
81
- self.sample_size = sample_size
82
- time_embed_dim = block_out_channels[0] * 4
83
-
84
- # input
85
- self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
86
-
87
- # time
88
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
89
- timestep_input_dim = block_out_channels[0]
90
-
91
- self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
92
-
93
- # class embedding
94
- if class_embed_type is None and num_class_embeds is not None:
95
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
96
- elif class_embed_type == "timestep":
97
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
98
- elif class_embed_type == "identity":
99
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
100
- else:
101
- self.class_embedding = None
102
-
103
- self.down_blocks = nn.ModuleList([])
104
- self.mid_block = None
105
- self.up_blocks = nn.ModuleList([])
106
-
107
- if isinstance(only_cross_attention, bool):
108
- only_cross_attention = [only_cross_attention] * len(down_block_types)
109
-
110
- if isinstance(attention_head_dim, int):
111
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
112
-
113
- # down
114
- output_channel = block_out_channels[0]
115
- for i, down_block_type in enumerate(down_block_types):
116
- input_channel = output_channel
117
- output_channel = block_out_channels[i]
118
- is_final_block = i == len(block_out_channels) - 1
119
-
120
- down_block = get_down_block(
121
- down_block_type,
122
- num_layers=layers_per_block,
123
- in_channels=input_channel,
124
- out_channels=output_channel,
125
- temb_channels=time_embed_dim,
126
- add_downsample=not is_final_block,
127
- resnet_eps=norm_eps,
128
- resnet_act_fn=act_fn,
129
- resnet_groups=norm_num_groups,
130
- cross_attention_dim=cross_attention_dim,
131
- attn_num_head_channels=attention_head_dim[i],
132
- downsample_padding=downsample_padding,
133
- dual_cross_attention=dual_cross_attention,
134
- use_linear_projection=use_linear_projection,
135
- only_cross_attention=only_cross_attention[i],
136
- upcast_attention=upcast_attention,
137
- resnet_time_scale_shift=resnet_time_scale_shift,
138
- )
139
- self.down_blocks.append(down_block)
140
-
141
- # mid
142
- if mid_block_type == "UNetMidBlock3DCrossAttn":
143
- self.mid_block = UNetMidBlock3DCrossAttn(
144
- in_channels=block_out_channels[-1],
145
- temb_channels=time_embed_dim,
146
- resnet_eps=norm_eps,
147
- resnet_act_fn=act_fn,
148
- output_scale_factor=mid_block_scale_factor,
149
- resnet_time_scale_shift=resnet_time_scale_shift,
150
- cross_attention_dim=cross_attention_dim,
151
- attn_num_head_channels=attention_head_dim[-1],
152
- resnet_groups=norm_num_groups,
153
- dual_cross_attention=dual_cross_attention,
154
- use_linear_projection=use_linear_projection,
155
- upcast_attention=upcast_attention,
156
- )
157
- else:
158
- raise ValueError(f"unknown mid_block_type : {mid_block_type}")
159
-
160
- # count how many layers upsample the videos
161
- self.num_upsamplers = 0
162
-
163
- # up
164
- reversed_block_out_channels = list(reversed(block_out_channels))
165
- reversed_attention_head_dim = list(reversed(attention_head_dim))
166
- only_cross_attention = list(reversed(only_cross_attention))
167
- output_channel = reversed_block_out_channels[0]
168
- for i, up_block_type in enumerate(up_block_types):
169
- is_final_block = i == len(block_out_channels) - 1
170
-
171
- prev_output_channel = output_channel
172
- output_channel = reversed_block_out_channels[i]
173
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
174
-
175
- # add upsample block for all BUT final layer
176
- if not is_final_block:
177
- add_upsample = True
178
- self.num_upsamplers += 1
179
- else:
180
- add_upsample = False
181
-
182
- up_block = get_up_block(
183
- up_block_type,
184
- num_layers=layers_per_block + 1,
185
- in_channels=input_channel,
186
- out_channels=output_channel,
187
- prev_output_channel=prev_output_channel,
188
- temb_channels=time_embed_dim,
189
- add_upsample=add_upsample,
190
- resnet_eps=norm_eps,
191
- resnet_act_fn=act_fn,
192
- resnet_groups=norm_num_groups,
193
- cross_attention_dim=cross_attention_dim,
194
- attn_num_head_channels=reversed_attention_head_dim[i],
195
- dual_cross_attention=dual_cross_attention,
196
- use_linear_projection=use_linear_projection,
197
- only_cross_attention=only_cross_attention[i],
198
- upcast_attention=upcast_attention,
199
- resnet_time_scale_shift=resnet_time_scale_shift,
200
- )
201
- self.up_blocks.append(up_block)
202
- prev_output_channel = output_channel
203
-
204
- # out
205
- self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
206
- self.conv_act = nn.SiLU()
207
- self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
208
-
209
- def set_attention_slice(self, slice_size):
210
- r"""
211
- Enable sliced attention computation.
212
-
213
- When this option is enabled, the attention module will split the input tensor in slices, to compute attention
214
- in several steps. This is useful to save some memory in exchange for a small speed decrease.
215
-
216
- Args:
217
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
218
- When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
219
- `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
220
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
221
- must be a multiple of `slice_size`.
222
- """
223
- sliceable_head_dims = []
224
-
225
- def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
226
- if hasattr(module, "set_attention_slice"):
227
- sliceable_head_dims.append(module.sliceable_head_dim)
228
-
229
- for child in module.children():
230
- fn_recursive_retrieve_slicable_dims(child)
231
-
232
- # retrieve number of attention layers
233
- for module in self.children():
234
- fn_recursive_retrieve_slicable_dims(module)
235
-
236
- num_slicable_layers = len(sliceable_head_dims)
237
-
238
- if slice_size == "auto":
239
- # half the attention head size is usually a good trade-off between
240
- # speed and memory
241
- slice_size = [dim // 2 for dim in sliceable_head_dims]
242
- elif slice_size == "max":
243
- # make smallest slice possible
244
- slice_size = num_slicable_layers * [1]
245
-
246
- slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
247
-
248
- if len(slice_size) != len(sliceable_head_dims):
249
- raise ValueError(
250
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
251
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
252
- )
253
-
254
- for i in range(len(slice_size)):
255
- size = slice_size[i]
256
- dim = sliceable_head_dims[i]
257
- if size is not None and size > dim:
258
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
259
-
260
- # Recursively walk through all the children.
261
- # Any children which exposes the set_attention_slice method
262
- # gets the message
263
- def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
264
- if hasattr(module, "set_attention_slice"):
265
- module.set_attention_slice(slice_size.pop())
266
-
267
- for child in module.children():
268
- fn_recursive_set_attention_slice(child, slice_size)
269
-
270
- reversed_slice_size = list(reversed(slice_size))
271
- for module in self.children():
272
- fn_recursive_set_attention_slice(module, reversed_slice_size)
273
-
274
- def _set_gradient_checkpointing(self, module, value=False):
275
- if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
276
- module.gradient_checkpointing = value
277
-
278
- def forward(
279
- self,
280
- sample: torch.FloatTensor,
281
- timestep: Union[torch.Tensor, float, int],
282
- encoder_hidden_states: torch.Tensor,
283
- class_labels: Optional[torch.Tensor] = None,
284
- attention_mask: Optional[torch.Tensor] = None,
285
- return_dict: bool = True,
286
- ) -> Union[UNet3DConditionOutput, Tuple]:
287
- r"""
288
- Args:
289
- sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
290
- timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
291
- encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
292
- return_dict (`bool`, *optional*, defaults to `True`):
293
- Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
294
-
295
- Returns:
296
- [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
297
- [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
298
- returning a tuple, the first element is the sample tensor.
299
- """
300
- # By default samples have to be AT least a multiple of the overall upsampling factor.
301
- # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
302
- # However, the upsampling interpolation output size can be forced to fit any upsampling size
303
- # on the fly if necessary.
304
- default_overall_up_factor = 2**self.num_upsamplers
305
-
306
- # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
307
- forward_upsample_size = False
308
- upsample_size = None
309
-
310
- if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
311
- logger.info("Forward upsample size to force interpolation output size.")
312
- forward_upsample_size = True
313
-
314
- # prepare attention_mask
315
- if attention_mask is not None:
316
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
317
- attention_mask = attention_mask.unsqueeze(1)
318
-
319
- # center input if necessary
320
- if self.config.center_input_sample:
321
- sample = 2 * sample - 1.0
322
-
323
- # time
324
- timesteps = timestep
325
- if not torch.is_tensor(timesteps):
326
- # This would be a good case for the `match` statement (Python 3.10+)
327
- is_mps = sample.device.type == "mps"
328
- if isinstance(timestep, float):
329
- dtype = torch.float32 if is_mps else torch.float64
330
- else:
331
- dtype = torch.int32 if is_mps else torch.int64
332
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
333
- elif len(timesteps.shape) == 0:
334
- timesteps = timesteps[None].to(sample.device)
335
-
336
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
337
- timesteps = timesteps.expand(sample.shape[0])
338
-
339
- t_emb = self.time_proj(timesteps)
340
-
341
- # timesteps does not contain any weights and will always return f32 tensors
342
- # but time_embedding might actually be running in fp16. so we need to cast here.
343
- # there might be better ways to encapsulate this.
344
- t_emb = t_emb.to(dtype=self.dtype)
345
- emb = self.time_embedding(t_emb)
346
-
347
- if self.class_embedding is not None:
348
- if class_labels is None:
349
- raise ValueError("class_labels should be provided when num_class_embeds > 0")
350
-
351
- if self.config.class_embed_type == "timestep":
352
- class_labels = self.time_proj(class_labels)
353
-
354
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
355
- emb = emb + class_emb
356
-
357
- # pre-process
358
- sample = self.conv_in(sample)
359
-
360
- # down
361
- down_block_res_samples = (sample,)
362
- for downsample_block in self.down_blocks:
363
- if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
364
- sample, res_samples = downsample_block(
365
- hidden_states=sample,
366
- temb=emb,
367
- encoder_hidden_states=encoder_hidden_states,
368
- attention_mask=attention_mask,
369
- )
370
- else:
371
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
372
-
373
- down_block_res_samples += res_samples
374
-
375
- # mid
376
- sample = self.mid_block(
377
- sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
378
- )
379
-
380
- # up
381
- for i, upsample_block in enumerate(self.up_blocks):
382
- is_final_block = i == len(self.up_blocks) - 1
383
-
384
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
385
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
386
-
387
- # if we have not reached the final block and need to forward the
388
- # upsample size, we do it here
389
- if not is_final_block and forward_upsample_size:
390
- upsample_size = down_block_res_samples[-1].shape[2:]
391
-
392
- if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
393
- sample = upsample_block(
394
- hidden_states=sample,
395
- temb=emb,
396
- res_hidden_states_tuple=res_samples,
397
- encoder_hidden_states=encoder_hidden_states,
398
- upsample_size=upsample_size,
399
- attention_mask=attention_mask,
400
- )
401
- else:
402
- sample = upsample_block(
403
- hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
404
- )
405
- # post-process
406
- sample = self.conv_norm_out(sample)
407
- sample = self.conv_act(sample)
408
- sample = self.conv_out(sample)
409
-
410
- if not return_dict:
411
- return (sample,)
412
-
413
- return UNet3DConditionOutput(sample=sample)
414
-
415
- @classmethod
416
- def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
417
- if subfolder is not None:
418
- pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
419
-
420
- config_file = os.path.join(pretrained_model_path, 'config.json')
421
- if not os.path.isfile(config_file):
422
- raise RuntimeError(f"{config_file} does not exist")
423
- with open(config_file, "r") as f:
424
- config = json.load(f)
425
- config["_class_name"] = cls.__name__
426
- config["down_block_types"] = [
427
- "CrossAttnDownBlock3D",
428
- "CrossAttnDownBlock3D",
429
- "CrossAttnDownBlock3D",
430
- "DownBlock3D"
431
- ]
432
- config["up_block_types"] = [
433
- "UpBlock3D",
434
- "CrossAttnUpBlock3D",
435
- "CrossAttnUpBlock3D",
436
- "CrossAttnUpBlock3D"
437
- ]
438
-
439
- from diffusers.utils import WEIGHTS_NAME
440
- model = cls.from_config(config)
441
- model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
442
- if not os.path.isfile(model_file):
443
- raise RuntimeError(f"{model_file} does not exist")
444
- state_dict = torch.load(model_file, map_location="cpu")
445
- for k, v in model.state_dict().items():
446
- if '_temp.' in k:
447
- state_dict.update({k: v})
448
- model.load_state_dict(state_dict)
449
-
450
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/models/unet_blocks.py DELETED
@@ -1,588 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
-
3
- import torch
4
- from torch import nn
5
-
6
- from .attention import Transformer3DModel
7
- from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
-
9
-
10
- def get_down_block(
11
- down_block_type,
12
- num_layers,
13
- in_channels,
14
- out_channels,
15
- temb_channels,
16
- add_downsample,
17
- resnet_eps,
18
- resnet_act_fn,
19
- attn_num_head_channels,
20
- resnet_groups=None,
21
- cross_attention_dim=None,
22
- downsample_padding=None,
23
- dual_cross_attention=False,
24
- use_linear_projection=False,
25
- only_cross_attention=False,
26
- upcast_attention=False,
27
- resnet_time_scale_shift="default",
28
- ):
29
- down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
- if down_block_type == "DownBlock3D":
31
- return DownBlock3D(
32
- num_layers=num_layers,
33
- in_channels=in_channels,
34
- out_channels=out_channels,
35
- temb_channels=temb_channels,
36
- add_downsample=add_downsample,
37
- resnet_eps=resnet_eps,
38
- resnet_act_fn=resnet_act_fn,
39
- resnet_groups=resnet_groups,
40
- downsample_padding=downsample_padding,
41
- resnet_time_scale_shift=resnet_time_scale_shift,
42
- )
43
- elif down_block_type == "CrossAttnDownBlock3D":
44
- if cross_attention_dim is None:
45
- raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
- return CrossAttnDownBlock3D(
47
- num_layers=num_layers,
48
- in_channels=in_channels,
49
- out_channels=out_channels,
50
- temb_channels=temb_channels,
51
- add_downsample=add_downsample,
52
- resnet_eps=resnet_eps,
53
- resnet_act_fn=resnet_act_fn,
54
- resnet_groups=resnet_groups,
55
- downsample_padding=downsample_padding,
56
- cross_attention_dim=cross_attention_dim,
57
- attn_num_head_channels=attn_num_head_channels,
58
- dual_cross_attention=dual_cross_attention,
59
- use_linear_projection=use_linear_projection,
60
- only_cross_attention=only_cross_attention,
61
- upcast_attention=upcast_attention,
62
- resnet_time_scale_shift=resnet_time_scale_shift,
63
- )
64
- raise ValueError(f"{down_block_type} does not exist.")
65
-
66
-
67
- def get_up_block(
68
- up_block_type,
69
- num_layers,
70
- in_channels,
71
- out_channels,
72
- prev_output_channel,
73
- temb_channels,
74
- add_upsample,
75
- resnet_eps,
76
- resnet_act_fn,
77
- attn_num_head_channels,
78
- resnet_groups=None,
79
- cross_attention_dim=None,
80
- dual_cross_attention=False,
81
- use_linear_projection=False,
82
- only_cross_attention=False,
83
- upcast_attention=False,
84
- resnet_time_scale_shift="default",
85
- ):
86
- up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
- if up_block_type == "UpBlock3D":
88
- return UpBlock3D(
89
- num_layers=num_layers,
90
- in_channels=in_channels,
91
- out_channels=out_channels,
92
- prev_output_channel=prev_output_channel,
93
- temb_channels=temb_channels,
94
- add_upsample=add_upsample,
95
- resnet_eps=resnet_eps,
96
- resnet_act_fn=resnet_act_fn,
97
- resnet_groups=resnet_groups,
98
- resnet_time_scale_shift=resnet_time_scale_shift,
99
- )
100
- elif up_block_type == "CrossAttnUpBlock3D":
101
- if cross_attention_dim is None:
102
- raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
- return CrossAttnUpBlock3D(
104
- num_layers=num_layers,
105
- in_channels=in_channels,
106
- out_channels=out_channels,
107
- prev_output_channel=prev_output_channel,
108
- temb_channels=temb_channels,
109
- add_upsample=add_upsample,
110
- resnet_eps=resnet_eps,
111
- resnet_act_fn=resnet_act_fn,
112
- resnet_groups=resnet_groups,
113
- cross_attention_dim=cross_attention_dim,
114
- attn_num_head_channels=attn_num_head_channels,
115
- dual_cross_attention=dual_cross_attention,
116
- use_linear_projection=use_linear_projection,
117
- only_cross_attention=only_cross_attention,
118
- upcast_attention=upcast_attention,
119
- resnet_time_scale_shift=resnet_time_scale_shift,
120
- )
121
- raise ValueError(f"{up_block_type} does not exist.")
122
-
123
-
124
- class UNetMidBlock3DCrossAttn(nn.Module):
125
- def __init__(
126
- self,
127
- in_channels: int,
128
- temb_channels: int,
129
- dropout: float = 0.0,
130
- num_layers: int = 1,
131
- resnet_eps: float = 1e-6,
132
- resnet_time_scale_shift: str = "default",
133
- resnet_act_fn: str = "swish",
134
- resnet_groups: int = 32,
135
- resnet_pre_norm: bool = True,
136
- attn_num_head_channels=1,
137
- output_scale_factor=1.0,
138
- cross_attention_dim=1280,
139
- dual_cross_attention=False,
140
- use_linear_projection=False,
141
- upcast_attention=False,
142
- ):
143
- super().__init__()
144
-
145
- self.has_cross_attention = True
146
- self.attn_num_head_channels = attn_num_head_channels
147
- resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
-
149
- # there is always at least one resnet
150
- resnets = [
151
- ResnetBlock3D(
152
- in_channels=in_channels,
153
- out_channels=in_channels,
154
- temb_channels=temb_channels,
155
- eps=resnet_eps,
156
- groups=resnet_groups,
157
- dropout=dropout,
158
- time_embedding_norm=resnet_time_scale_shift,
159
- non_linearity=resnet_act_fn,
160
- output_scale_factor=output_scale_factor,
161
- pre_norm=resnet_pre_norm,
162
- )
163
- ]
164
- attentions = []
165
-
166
- for _ in range(num_layers):
167
- if dual_cross_attention:
168
- raise NotImplementedError
169
- attentions.append(
170
- Transformer3DModel(
171
- attn_num_head_channels,
172
- in_channels // attn_num_head_channels,
173
- in_channels=in_channels,
174
- num_layers=1,
175
- cross_attention_dim=cross_attention_dim,
176
- norm_num_groups=resnet_groups,
177
- use_linear_projection=use_linear_projection,
178
- upcast_attention=upcast_attention,
179
- )
180
- )
181
- resnets.append(
182
- ResnetBlock3D(
183
- in_channels=in_channels,
184
- out_channels=in_channels,
185
- temb_channels=temb_channels,
186
- eps=resnet_eps,
187
- groups=resnet_groups,
188
- dropout=dropout,
189
- time_embedding_norm=resnet_time_scale_shift,
190
- non_linearity=resnet_act_fn,
191
- output_scale_factor=output_scale_factor,
192
- pre_norm=resnet_pre_norm,
193
- )
194
- )
195
-
196
- self.attentions = nn.ModuleList(attentions)
197
- self.resnets = nn.ModuleList(resnets)
198
-
199
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
- hidden_states = self.resnets[0](hidden_states, temb)
201
- for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
- hidden_states = resnet(hidden_states, temb)
204
-
205
- return hidden_states
206
-
207
-
208
- class CrossAttnDownBlock3D(nn.Module):
209
- def __init__(
210
- self,
211
- in_channels: int,
212
- out_channels: int,
213
- temb_channels: int,
214
- dropout: float = 0.0,
215
- num_layers: int = 1,
216
- resnet_eps: float = 1e-6,
217
- resnet_time_scale_shift: str = "default",
218
- resnet_act_fn: str = "swish",
219
- resnet_groups: int = 32,
220
- resnet_pre_norm: bool = True,
221
- attn_num_head_channels=1,
222
- cross_attention_dim=1280,
223
- output_scale_factor=1.0,
224
- downsample_padding=1,
225
- add_downsample=True,
226
- dual_cross_attention=False,
227
- use_linear_projection=False,
228
- only_cross_attention=False,
229
- upcast_attention=False,
230
- ):
231
- super().__init__()
232
- resnets = []
233
- attentions = []
234
-
235
- self.has_cross_attention = True
236
- self.attn_num_head_channels = attn_num_head_channels
237
-
238
- for i in range(num_layers):
239
- in_channels = in_channels if i == 0 else out_channels
240
- resnets.append(
241
- ResnetBlock3D(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- temb_channels=temb_channels,
245
- eps=resnet_eps,
246
- groups=resnet_groups,
247
- dropout=dropout,
248
- time_embedding_norm=resnet_time_scale_shift,
249
- non_linearity=resnet_act_fn,
250
- output_scale_factor=output_scale_factor,
251
- pre_norm=resnet_pre_norm,
252
- )
253
- )
254
- if dual_cross_attention:
255
- raise NotImplementedError
256
- attentions.append(
257
- Transformer3DModel(
258
- attn_num_head_channels,
259
- out_channels // attn_num_head_channels,
260
- in_channels=out_channels,
261
- num_layers=1,
262
- cross_attention_dim=cross_attention_dim,
263
- norm_num_groups=resnet_groups,
264
- use_linear_projection=use_linear_projection,
265
- only_cross_attention=only_cross_attention,
266
- upcast_attention=upcast_attention,
267
- )
268
- )
269
- self.attentions = nn.ModuleList(attentions)
270
- self.resnets = nn.ModuleList(resnets)
271
-
272
- if add_downsample:
273
- self.downsamplers = nn.ModuleList(
274
- [
275
- Downsample3D(
276
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
- )
278
- ]
279
- )
280
- else:
281
- self.downsamplers = None
282
-
283
- self.gradient_checkpointing = False
284
-
285
- def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
286
- output_states = ()
287
-
288
- for resnet, attn in zip(self.resnets, self.attentions):
289
- if self.training and self.gradient_checkpointing:
290
-
291
- def create_custom_forward(module, return_dict=None):
292
- def custom_forward(*inputs):
293
- if return_dict is not None:
294
- return module(*inputs, return_dict=return_dict)
295
- else:
296
- return module(*inputs)
297
-
298
- return custom_forward
299
-
300
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
- hidden_states = torch.utils.checkpoint.checkpoint(
302
- create_custom_forward(attn, return_dict=False),
303
- hidden_states,
304
- encoder_hidden_states,
305
- )[0]
306
- else:
307
- hidden_states = resnet(hidden_states, temb)
308
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
-
310
- output_states += (hidden_states,)
311
-
312
- if self.downsamplers is not None:
313
- for downsampler in self.downsamplers:
314
- hidden_states = downsampler(hidden_states)
315
-
316
- output_states += (hidden_states,)
317
-
318
- return hidden_states, output_states
319
-
320
-
321
- class DownBlock3D(nn.Module):
322
- def __init__(
323
- self,
324
- in_channels: int,
325
- out_channels: int,
326
- temb_channels: int,
327
- dropout: float = 0.0,
328
- num_layers: int = 1,
329
- resnet_eps: float = 1e-6,
330
- resnet_time_scale_shift: str = "default",
331
- resnet_act_fn: str = "swish",
332
- resnet_groups: int = 32,
333
- resnet_pre_norm: bool = True,
334
- output_scale_factor=1.0,
335
- add_downsample=True,
336
- downsample_padding=1,
337
- ):
338
- super().__init__()
339
- resnets = []
340
-
341
- for i in range(num_layers):
342
- in_channels = in_channels if i == 0 else out_channels
343
- resnets.append(
344
- ResnetBlock3D(
345
- in_channels=in_channels,
346
- out_channels=out_channels,
347
- temb_channels=temb_channels,
348
- eps=resnet_eps,
349
- groups=resnet_groups,
350
- dropout=dropout,
351
- time_embedding_norm=resnet_time_scale_shift,
352
- non_linearity=resnet_act_fn,
353
- output_scale_factor=output_scale_factor,
354
- pre_norm=resnet_pre_norm,
355
- )
356
- )
357
-
358
- self.resnets = nn.ModuleList(resnets)
359
-
360
- if add_downsample:
361
- self.downsamplers = nn.ModuleList(
362
- [
363
- Downsample3D(
364
- out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
365
- )
366
- ]
367
- )
368
- else:
369
- self.downsamplers = None
370
-
371
- self.gradient_checkpointing = False
372
-
373
- def forward(self, hidden_states, temb=None):
374
- output_states = ()
375
-
376
- for resnet in self.resnets:
377
- if self.training and self.gradient_checkpointing:
378
-
379
- def create_custom_forward(module):
380
- def custom_forward(*inputs):
381
- return module(*inputs)
382
-
383
- return custom_forward
384
-
385
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
386
- else:
387
- hidden_states = resnet(hidden_states, temb)
388
-
389
- output_states += (hidden_states,)
390
-
391
- if self.downsamplers is not None:
392
- for downsampler in self.downsamplers:
393
- hidden_states = downsampler(hidden_states)
394
-
395
- output_states += (hidden_states,)
396
-
397
- return hidden_states, output_states
398
-
399
-
400
- class CrossAttnUpBlock3D(nn.Module):
401
- def __init__(
402
- self,
403
- in_channels: int,
404
- out_channels: int,
405
- prev_output_channel: int,
406
- temb_channels: int,
407
- dropout: float = 0.0,
408
- num_layers: int = 1,
409
- resnet_eps: float = 1e-6,
410
- resnet_time_scale_shift: str = "default",
411
- resnet_act_fn: str = "swish",
412
- resnet_groups: int = 32,
413
- resnet_pre_norm: bool = True,
414
- attn_num_head_channels=1,
415
- cross_attention_dim=1280,
416
- output_scale_factor=1.0,
417
- add_upsample=True,
418
- dual_cross_attention=False,
419
- use_linear_projection=False,
420
- only_cross_attention=False,
421
- upcast_attention=False,
422
- ):
423
- super().__init__()
424
- resnets = []
425
- attentions = []
426
-
427
- self.has_cross_attention = True
428
- self.attn_num_head_channels = attn_num_head_channels
429
-
430
- for i in range(num_layers):
431
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
432
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
433
-
434
- resnets.append(
435
- ResnetBlock3D(
436
- in_channels=resnet_in_channels + res_skip_channels,
437
- out_channels=out_channels,
438
- temb_channels=temb_channels,
439
- eps=resnet_eps,
440
- groups=resnet_groups,
441
- dropout=dropout,
442
- time_embedding_norm=resnet_time_scale_shift,
443
- non_linearity=resnet_act_fn,
444
- output_scale_factor=output_scale_factor,
445
- pre_norm=resnet_pre_norm,
446
- )
447
- )
448
- if dual_cross_attention:
449
- raise NotImplementedError
450
- attentions.append(
451
- Transformer3DModel(
452
- attn_num_head_channels,
453
- out_channels // attn_num_head_channels,
454
- in_channels=out_channels,
455
- num_layers=1,
456
- cross_attention_dim=cross_attention_dim,
457
- norm_num_groups=resnet_groups,
458
- use_linear_projection=use_linear_projection,
459
- only_cross_attention=only_cross_attention,
460
- upcast_attention=upcast_attention,
461
- )
462
- )
463
-
464
- self.attentions = nn.ModuleList(attentions)
465
- self.resnets = nn.ModuleList(resnets)
466
-
467
- if add_upsample:
468
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
469
- else:
470
- self.upsamplers = None
471
-
472
- self.gradient_checkpointing = False
473
-
474
- def forward(
475
- self,
476
- hidden_states,
477
- res_hidden_states_tuple,
478
- temb=None,
479
- encoder_hidden_states=None,
480
- upsample_size=None,
481
- attention_mask=None,
482
- ):
483
- for resnet, attn in zip(self.resnets, self.attentions):
484
- # pop res hidden states
485
- res_hidden_states = res_hidden_states_tuple[-1]
486
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
487
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
488
-
489
- if self.training and self.gradient_checkpointing:
490
-
491
- def create_custom_forward(module, return_dict=None):
492
- def custom_forward(*inputs):
493
- if return_dict is not None:
494
- return module(*inputs, return_dict=return_dict)
495
- else:
496
- return module(*inputs)
497
-
498
- return custom_forward
499
-
500
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
501
- hidden_states = torch.utils.checkpoint.checkpoint(
502
- create_custom_forward(attn, return_dict=False),
503
- hidden_states,
504
- encoder_hidden_states,
505
- )[0]
506
- else:
507
- hidden_states = resnet(hidden_states, temb)
508
- hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
509
-
510
- if self.upsamplers is not None:
511
- for upsampler in self.upsamplers:
512
- hidden_states = upsampler(hidden_states, upsample_size)
513
-
514
- return hidden_states
515
-
516
-
517
- class UpBlock3D(nn.Module):
518
- def __init__(
519
- self,
520
- in_channels: int,
521
- prev_output_channel: int,
522
- out_channels: int,
523
- temb_channels: int,
524
- dropout: float = 0.0,
525
- num_layers: int = 1,
526
- resnet_eps: float = 1e-6,
527
- resnet_time_scale_shift: str = "default",
528
- resnet_act_fn: str = "swish",
529
- resnet_groups: int = 32,
530
- resnet_pre_norm: bool = True,
531
- output_scale_factor=1.0,
532
- add_upsample=True,
533
- ):
534
- super().__init__()
535
- resnets = []
536
-
537
- for i in range(num_layers):
538
- res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
539
- resnet_in_channels = prev_output_channel if i == 0 else out_channels
540
-
541
- resnets.append(
542
- ResnetBlock3D(
543
- in_channels=resnet_in_channels + res_skip_channels,
544
- out_channels=out_channels,
545
- temb_channels=temb_channels,
546
- eps=resnet_eps,
547
- groups=resnet_groups,
548
- dropout=dropout,
549
- time_embedding_norm=resnet_time_scale_shift,
550
- non_linearity=resnet_act_fn,
551
- output_scale_factor=output_scale_factor,
552
- pre_norm=resnet_pre_norm,
553
- )
554
- )
555
-
556
- self.resnets = nn.ModuleList(resnets)
557
-
558
- if add_upsample:
559
- self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
560
- else:
561
- self.upsamplers = None
562
-
563
- self.gradient_checkpointing = False
564
-
565
- def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
566
- for resnet in self.resnets:
567
- # pop res hidden states
568
- res_hidden_states = res_hidden_states_tuple[-1]
569
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
570
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
571
-
572
- if self.training and self.gradient_checkpointing:
573
-
574
- def create_custom_forward(module):
575
- def custom_forward(*inputs):
576
- return module(*inputs)
577
-
578
- return custom_forward
579
-
580
- hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
- else:
582
- hidden_states = resnet(hidden_states, temb)
583
-
584
- if self.upsamplers is not None:
585
- for upsampler in self.upsamplers:
586
- hidden_states = upsampler(hidden_states, upsample_size)
587
-
588
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/pipelines/__pycache__/pipeline_tuneavideo.cpython-38.pyc DELETED
Binary file (11.5 kB)
 
Tune-A-Video/tuneavideo/pipelines/pipeline_tuneavideo.py DELETED
@@ -1,407 +0,0 @@
1
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
-
3
- import inspect
4
- from typing import Callable, List, Optional, Union
5
- from dataclasses import dataclass
6
-
7
- import numpy as np
8
- import torch
9
-
10
- from diffusers.utils import is_accelerate_available
11
- from packaging import version
12
- from transformers import CLIPTextModel, CLIPTokenizer
13
-
14
- from diffusers.configuration_utils import FrozenDict
15
- from diffusers.models import AutoencoderKL
16
- from diffusers.pipeline_utils import DiffusionPipeline
17
- from diffusers.schedulers import (
18
- DDIMScheduler,
19
- DPMSolverMultistepScheduler,
20
- EulerAncestralDiscreteScheduler,
21
- EulerDiscreteScheduler,
22
- LMSDiscreteScheduler,
23
- PNDMScheduler,
24
- )
25
- from diffusers.utils import deprecate, logging, BaseOutput
26
-
27
- from einops import rearrange
28
-
29
- from ..models.unet import UNet3DConditionModel
30
-
31
-
32
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
-
34
-
35
- @dataclass
36
- class TuneAVideoPipelineOutput(BaseOutput):
37
- videos: Union[torch.Tensor, np.ndarray]
38
-
39
-
40
- class TuneAVideoPipeline(DiffusionPipeline):
41
- _optional_components = []
42
-
43
- def __init__(
44
- self,
45
- vae: AutoencoderKL,
46
- text_encoder: CLIPTextModel,
47
- tokenizer: CLIPTokenizer,
48
- unet: UNet3DConditionModel,
49
- scheduler: Union[
50
- DDIMScheduler,
51
- PNDMScheduler,
52
- LMSDiscreteScheduler,
53
- EulerDiscreteScheduler,
54
- EulerAncestralDiscreteScheduler,
55
- DPMSolverMultistepScheduler,
56
- ],
57
- ):
58
- super().__init__()
59
-
60
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
- deprecation_message = (
62
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
- " file"
68
- )
69
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
- new_config = dict(scheduler.config)
71
- new_config["steps_offset"] = 1
72
- scheduler._internal_dict = FrozenDict(new_config)
73
-
74
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
- deprecation_message = (
76
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
- )
82
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
- new_config = dict(scheduler.config)
84
- new_config["clip_sample"] = False
85
- scheduler._internal_dict = FrozenDict(new_config)
86
-
87
- is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
- version.parse(unet.config._diffusers_version).base_version
89
- ) < version.parse("0.9.0.dev0")
90
- is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
- if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
- deprecation_message = (
93
- "The configuration file of the unet has set the default `sample_size` to smaller than"
94
- " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
- " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
- " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
- " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
- " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
- " the `unet/config.json` file"
102
- )
103
- deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
- new_config = dict(unet.config)
105
- new_config["sample_size"] = 64
106
- unet._internal_dict = FrozenDict(new_config)
107
-
108
- self.register_modules(
109
- vae=vae,
110
- text_encoder=text_encoder,
111
- tokenizer=tokenizer,
112
- unet=unet,
113
- scheduler=scheduler,
114
- )
115
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
-
117
- def enable_vae_slicing(self):
118
- self.vae.enable_slicing()
119
-
120
- def disable_vae_slicing(self):
121
- self.vae.disable_slicing()
122
-
123
- def enable_sequential_cpu_offload(self, gpu_id=0):
124
- if is_accelerate_available():
125
- from accelerate import cpu_offload
126
- else:
127
- raise ImportError("Please install accelerate via `pip install accelerate`")
128
-
129
- device = torch.device(f"cuda:{gpu_id}")
130
-
131
- for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
132
- if cpu_offloaded_model is not None:
133
- cpu_offload(cpu_offloaded_model, device)
134
-
135
-
136
- @property
137
- def _execution_device(self):
138
- if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
139
- return self.device
140
- for module in self.unet.modules():
141
- if (
142
- hasattr(module, "_hf_hook")
143
- and hasattr(module._hf_hook, "execution_device")
144
- and module._hf_hook.execution_device is not None
145
- ):
146
- return torch.device(module._hf_hook.execution_device)
147
- return self.device
148
-
149
- def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
150
- batch_size = len(prompt) if isinstance(prompt, list) else 1
151
-
152
- text_inputs = self.tokenizer(
153
- prompt,
154
- padding="max_length",
155
- max_length=self.tokenizer.model_max_length,
156
- truncation=True,
157
- return_tensors="pt",
158
- )
159
- text_input_ids = text_inputs.input_ids
160
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
161
-
162
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
163
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
164
- logger.warning(
165
- "The following part of your input was truncated because CLIP can only handle sequences up to"
166
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
167
- )
168
-
169
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
170
- attention_mask = text_inputs.attention_mask.to(device)
171
- else:
172
- attention_mask = None
173
-
174
- text_embeddings = self.text_encoder(
175
- text_input_ids.to(device),
176
- attention_mask=attention_mask,
177
- )
178
- text_embeddings = text_embeddings[0]
179
-
180
- # duplicate text embeddings for each generation per prompt, using mps friendly method
181
- bs_embed, seq_len, _ = text_embeddings.shape
182
- text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
183
- text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
184
-
185
- # get unconditional embeddings for classifier free guidance
186
- if do_classifier_free_guidance:
187
- uncond_tokens: List[str]
188
- if negative_prompt is None:
189
- uncond_tokens = [""] * batch_size
190
- elif type(prompt) is not type(negative_prompt):
191
- raise TypeError(
192
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
193
- f" {type(prompt)}."
194
- )
195
- elif isinstance(negative_prompt, str):
196
- uncond_tokens = [negative_prompt]
197
- elif batch_size != len(negative_prompt):
198
- raise ValueError(
199
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
200
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
201
- " the batch size of `prompt`."
202
- )
203
- else:
204
- uncond_tokens = negative_prompt
205
-
206
- max_length = text_input_ids.shape[-1]
207
- uncond_input = self.tokenizer(
208
- uncond_tokens,
209
- padding="max_length",
210
- max_length=max_length,
211
- truncation=True,
212
- return_tensors="pt",
213
- )
214
-
215
- if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
216
- attention_mask = uncond_input.attention_mask.to(device)
217
- else:
218
- attention_mask = None
219
-
220
- uncond_embeddings = self.text_encoder(
221
- uncond_input.input_ids.to(device),
222
- attention_mask=attention_mask,
223
- )
224
- uncond_embeddings = uncond_embeddings[0]
225
-
226
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
227
- seq_len = uncond_embeddings.shape[1]
228
- uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
229
- uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
230
-
231
- # For classifier free guidance, we need to do two forward passes.
232
- # Here we concatenate the unconditional and text embeddings into a single batch
233
- # to avoid doing two forward passes
234
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
235
-
236
- return text_embeddings
237
-
238
- def decode_latents(self, latents):
239
- video_length = latents.shape[2]
240
- latents = 1 / 0.18215 * latents
241
- latents = rearrange(latents, "b c f h w -> (b f) c h w")
242
- video = self.vae.decode(latents).sample
243
- video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
244
- video = (video / 2 + 0.5).clamp(0, 1)
245
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
246
- video = video.cpu().float().numpy()
247
- return video
248
-
249
- def prepare_extra_step_kwargs(self, generator, eta):
250
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
251
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
252
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
253
- # and should be between [0, 1]
254
-
255
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
256
- extra_step_kwargs = {}
257
- if accepts_eta:
258
- extra_step_kwargs["eta"] = eta
259
-
260
- # check if the scheduler accepts generator
261
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
262
- if accepts_generator:
263
- extra_step_kwargs["generator"] = generator
264
- return extra_step_kwargs
265
-
266
- def check_inputs(self, prompt, height, width, callback_steps):
267
- if not isinstance(prompt, str) and not isinstance(prompt, list):
268
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
269
-
270
- if height % 8 != 0 or width % 8 != 0:
271
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
272
-
273
- if (callback_steps is None) or (
274
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
275
- ):
276
- raise ValueError(
277
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
278
- f" {type(callback_steps)}."
279
- )
280
-
281
- def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
282
- shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
283
- if isinstance(generator, list) and len(generator) != batch_size:
284
- raise ValueError(
285
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
286
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
287
- )
288
-
289
- if latents is None:
290
- rand_device = "cpu" if device.type == "mps" else device
291
-
292
- if isinstance(generator, list):
293
- shape = (1,) + shape[1:]
294
- latents = [
295
- torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
296
- for i in range(batch_size)
297
- ]
298
- latents = torch.cat(latents, dim=0).to(device)
299
- else:
300
- latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
301
- else:
302
- if latents.shape != shape:
303
- raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
304
- latents = latents.to(device)
305
-
306
- # scale the initial noise by the standard deviation required by the scheduler
307
- latents = latents * self.scheduler.init_noise_sigma
308
- return latents
309
-
310
- @torch.no_grad()
311
- def __call__(
312
- self,
313
- prompt: Union[str, List[str]],
314
- video_length: Optional[int],
315
- height: Optional[int] = None,
316
- width: Optional[int] = None,
317
- num_inference_steps: int = 50,
318
- guidance_scale: float = 7.5,
319
- negative_prompt: Optional[Union[str, List[str]]] = None,
320
- num_videos_per_prompt: Optional[int] = 1,
321
- eta: float = 0.0,
322
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
323
- latents: Optional[torch.FloatTensor] = None,
324
- output_type: Optional[str] = "tensor",
325
- return_dict: bool = True,
326
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
327
- callback_steps: Optional[int] = 1,
328
- **kwargs,
329
- ):
330
- # Default height and width to unet
331
- height = height or self.unet.config.sample_size * self.vae_scale_factor
332
- width = width or self.unet.config.sample_size * self.vae_scale_factor
333
-
334
- # Check inputs. Raise error if not correct
335
- self.check_inputs(prompt, height, width, callback_steps)
336
-
337
- # Define call parameters
338
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
339
- device = self._execution_device
340
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
341
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
342
- # corresponds to doing no classifier free guidance.
343
- do_classifier_free_guidance = guidance_scale > 1.0
344
-
345
- # Encode input prompt
346
- text_embeddings = self._encode_prompt(
347
- prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
348
- )
349
-
350
- # Prepare timesteps
351
- self.scheduler.set_timesteps(num_inference_steps, device=device)
352
- timesteps = self.scheduler.timesteps
353
-
354
- # Prepare latent variables
355
- num_channels_latents = self.unet.in_channels
356
- latents = self.prepare_latents(
357
- batch_size * num_videos_per_prompt,
358
- num_channels_latents,
359
- video_length,
360
- height,
361
- width,
362
- text_embeddings.dtype,
363
- device,
364
- generator,
365
- latents,
366
- )
367
- latents_dtype = latents.dtype
368
-
369
- # Prepare extra step kwargs.
370
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
371
-
372
- # Denoising loop
373
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
374
- with self.progress_bar(total=num_inference_steps) as progress_bar:
375
- for i, t in enumerate(timesteps):
376
- # expand the latents if we are doing classifier free guidance
377
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
378
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
379
-
380
- # predict the noise residual
381
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
382
-
383
- # perform guidance
384
- if do_classifier_free_guidance:
385
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
386
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
387
-
388
- # compute the previous noisy sample x_t -> x_t-1
389
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
390
-
391
- # call the callback, if provided
392
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
393
- progress_bar.update()
394
- if callback is not None and i % callback_steps == 0:
395
- callback(i, t, latents)
396
-
397
- # Post-processing
398
- video = self.decode_latents(latents)
399
-
400
- # Convert to tensor
401
- if output_type == "tensor":
402
- video = torch.from_numpy(video)
403
-
404
- if not return_dict:
405
- return video
406
-
407
- return TuneAVideoPipelineOutput(videos=video)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tune-A-Video/tuneavideo/util.py DELETED
@@ -1,23 +0,0 @@
1
- import os
2
- import imageio
3
- import numpy as np
4
-
5
- import torch
6
- import torchvision
7
-
8
- from einops import rearrange
9
-
10
-
11
- def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=3):
12
- videos = rearrange(videos, "b c t h w -> t b c h w")
13
- outputs = []
14
- for x in videos:
15
- x = torchvision.utils.make_grid(x, nrow=n_rows)
16
- x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
17
- if rescale:
18
- x = (x + 1.0) / 2.0 # -1,1 -> 0,1
19
- x = (x * 255).numpy().astype(np.uint8)
20
- outputs.append(x)
21
-
22
- os.makedirs(os.path.dirname(path), exist_ok=True)
23
- imageio.mimsave(path, outputs, fps=fps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference_fatezero.py CHANGED
@@ -16,16 +16,16 @@ def merge_config_then_run(
16
  enhance_words_value,
17
  num_steps,
18
  guidance_scale,
19
- user_input_video,
20
 
21
  # Temporal and spatial crop of the video
22
- start_sample_frame,
23
- n_sample_frame,
24
- stride,
25
- left_crop,
26
- right_crop,
27
- top_crop,
28
- bottom_crop,
29
  ):
30
  # , ] = inputs
31
  default_edit_config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_steps.yaml'
 
16
  enhance_words_value,
17
  num_steps,
18
  guidance_scale,
19
+ user_input_video=None,
20
 
21
  # Temporal and spatial crop of the video
22
+ start_sample_frame=0,
23
+ n_sample_frame=8,
24
+ stride=1,
25
+ left_crop=0,
26
+ right_crop=0,
27
+ top_crop=0,
28
+ bottom_crop=0,
29
  ):
30
  # , ] = inputs
31
  default_edit_config='FateZero/config/low_resource_teaser/jeep_watercolor_ddim_10_steps.yaml'
patch DELETED
@@ -1,15 +0,0 @@
1
- diff --git a/train_tuneavideo.py b/train_tuneavideo.py
2
- index 66d51b2..86b2a5d 100644
3
- --- a/train_tuneavideo.py
4
- +++ b/train_tuneavideo.py
5
- @@ -94,8 +94,8 @@ def main(
6
-
7
- # Handle the output folder creation
8
- if accelerator.is_main_process:
9
- - now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
10
- - output_dir = os.path.join(output_dir, now)
11
- + #now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
12
- + #output_dir = os.path.join(output_dir, now)
13
- os.makedirs(output_dir, exist_ok=True)
14
- OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
15
-