import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from run_demo import ZeroShotChatTemplate MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths This Space demonstrates the reasoning paths optimization (RPO) framework with a Llama 3 model with 8B parameters fine-tuned for math reasoning. Feel free to play with it, or duplicate to run generations without a queue! 🔎 For more details about the RPO training framework, check out the [paper](https://arxiv.org/abs/2410.10858) or [code](https://github.com/DAMO-NLP-SG/reasoning-paths-optimization). """ LICENSE = """
--- As a derivate work of [Llama-3-8b-chat](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta, this demo is governed by the original [license](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\nRunning on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_id = "chiayewken/llama3-8b-gsm8k-rpo" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: demo = ZeroShotChatTemplate() prompt = demo.make_prompt(message) input_ids = tokenizer(prompt, return_tensors="pt").input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?"], ["Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"], ["Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?"], ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()