File size: 2,801 Bytes
c4bc1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f5c16e68-e20a-473c-9d0c-557314b32203",
   "metadata": {},
   "source": [
    "## Creating the dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f4e1aece-855e-4687-81d4-376da67545e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "5c0519e8-bbfd-4f6b-ba4a-ae099de57598",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "fadf8ef6-ab1c-46a7-962c-512b61cff8b0",
   "metadata": {},
   "outputs": [],
   "source": [
    "base_path = \"../data/wikiart/\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9de6eb5e-0144-45e9-9eb0-faad01a94b66",
   "metadata": {},
   "outputs": [],
   "source": [
    "x = np.array([])\n",
    "x = np.append(x, np.array([f\"{base_path}{file}\" for file in os.listdir(base_path)]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "5d787870-a55e-4322-8df6-bd7b7e3f48da",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(80082,)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "b5fde846-d0ac-44f6-83e6-daa74aced018",
   "metadata": {},
   "outputs": [],
   "source": [
    "wikiart_dataset = np.array([x, x])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f9ab90a1-e78f-4009-9d97-e0a7066c36c3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2, 80082)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "wikiart_dataset.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "de89352d-6c8c-48ba-a255-f2362d8b8a56",
   "metadata": {},
   "outputs": [],
   "source": [
    "np.save(\"../data/artmakeitsports/datasets/wikiart_data\", wikiart_dataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "17b6829d-2c2b-4635-8301-9c2c6e738446",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}