Spaces:
Runtime error
Runtime error
from makeitsports_bot.data.dataset import ImageRetrievalDataset | |
from torch.utils.data import DataLoader | |
from makeitsports_bot.losses.contrastiveloss import ContrastiveLoss | |
from makeitsports_bot.data.data import get_data_from_local, split_train_val_test | |
from makeitsports_bot.data.transforms import transform | |
from makeitsports_bot.models.model import ViTImageSearchModel | |
import torch | |
from torch.optim import Adam | |
from torch.utils.tensorboard import SummaryWriter | |
import numpy as np | |
def fine_tune_vit(epochs, batch_size): | |
data = get_data_from_local() | |
train_data, val_data, test_data = split_train_val_test(data, 0.2, 0.1) | |
np.save("results/test_data", test_data) | |
train_dataset = ImageRetrievalDataset(train_data, transform=transform) | |
val_dataset = ImageRetrievalDataset(val_data, transform=transform) | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) | |
model = ViTImageSearchModel() | |
# logs | |
log_dir = "./logs/" | |
writer = SummaryWriter(log_dir=log_dir) | |
# params | |
criterion = ContrastiveLoss() | |
optimizer = Adam(model.parameters(), lr=1e-4) | |
epochs = epochs | |
for epoch in range(epochs): | |
model.train() | |
total_loss = 0 | |
for batch_idx, batch in enumerate(train_loader): | |
inputs, labels = batch | |
optimizer.zero_grad() | |
input_embeddings = model(inputs) | |
label_embeddings = model(labels) | |
loss = criterion(input_embeddings, label_embeddings) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
writer.add_scalar( | |
"Train Loss", loss.item(), epoch * len(train_loader) + batch_idx | |
) | |
avg_train_loss = total_loss / len(train_loader) | |
writer.add_scalar("Average Train Loss", avg_train_loss, epoch) | |
print(f"Epoch [{epoch+1}/{epochs}], Loss: {total_loss/len(train_loader)}") | |
model.eval() | |
with torch.no_grad(): | |
val_loss = 0 | |
for batch_idx, batch in enumerate(val_loader): | |
inputs, labels = batch | |
input_embeddings = model(inputs) | |
label_embeddings = model(labels) | |
loss = criterion(input_embeddings, label_embeddings) | |
val_loss += loss.item() | |
avg_val_loss = val_loss / len(val_loader) | |
writer.add_scalar("Validation Loss", avg_val_loss, epoch) | |
print(f"Validation Loss: {val_loss/len(val_loader)}") | |
torch.save(model.state_dict(), "results/model.pth") | |