Delete app.py
Browse files
app.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
## Setup
|
2 |
-
# Import the necessary Libraries
|
3 |
-
import os
|
4 |
-
import uuid
|
5 |
-
import json
|
6 |
-
import gradio as gr
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
from openai import OpenAI
|
12 |
-
from langchain_community.embeddings.sentence_transformer import (SentenceTransformerEmbeddings)
|
13 |
-
from langchain_community.vectorstores import Chroma
|
14 |
-
|
15 |
-
from huggingface_hub import CommitScheduler
|
16 |
-
from pathlib import Path
|
17 |
-
|
18 |
-
|
19 |
-
# Create Client
|
20 |
-
load_dotenv()
|
21 |
-
|
22 |
-
os.environ("ANYSCALE_API_KEY") = os.getenv("ANYSCALE_API_KEY")
|
23 |
-
client = OpenAI(
|
24 |
-
base_url="https://api.endpoints.anyscale.com/v1",
|
25 |
-
api_key=os.environ("ANYSCALE_API_KEY")
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
# Define the embedding model and the vectorstore
|
30 |
-
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
31 |
-
|
32 |
-
# Load the persisted vectorDB
|
33 |
-
|
34 |
-
collection_name = 'finsights-grey-10k-2023'
|
35 |
-
|
36 |
-
vectorstore_persisted = Chroma(
|
37 |
-
collection_name=collection_name,
|
38 |
-
embedding_function=embedding_model,
|
39 |
-
persist_directory='/content/finsights23_db'
|
40 |
-
)
|
41 |
-
|
42 |
-
retriever = vectorstore_persisted.as_retriever(
|
43 |
-
search_type="similarity",
|
44 |
-
search_kwargs={'k': 5},
|
45 |
-
)
|
46 |
-
|
47 |
-
# Prepare the logging functionality
|
48 |
-
|
49 |
-
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
50 |
-
log_folder = log_file.parent
|
51 |
-
|
52 |
-
scheduler = CommitScheduler(
|
53 |
-
repo_id="finsights-qna-logs",
|
54 |
-
repo_type="dataset",
|
55 |
-
folder_path=log_folder,
|
56 |
-
path_in_repo="data",
|
57 |
-
every=2
|
58 |
-
)
|
59 |
-
|
60 |
-
# Define the Q&A system message
|
61 |
-
qna_system_message = """
|
62 |
-
You are an assistant to a financial technology firm who answers user queries on 10-K reports from various indusrty players which contain detailed information about financial performance, risk factors, market trends, and strategic initiatives.
|
63 |
-
User input will have the context required by you to answer user questions.
|
64 |
-
This context will begin with the token: ###Context.
|
65 |
-
The context contains references to specific portions of a document relevant to the user query.
|
66 |
-
|
67 |
-
User questions will begin with the token: ###Question.
|
68 |
-
|
69 |
-
Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.
|
70 |
-
|
71 |
-
If the answer is not found in the context, respond "I don't know".
|
72 |
-
"""
|
73 |
-
|
74 |
-
# Define the user message template
|
75 |
-
qna_user_message_template = """
|
76 |
-
###Context
|
77 |
-
Here are some documents that are relevant to the question mentioned below.
|
78 |
-
{context}
|
79 |
-
|
80 |
-
###Question
|
81 |
-
{question}
|
82 |
-
"""
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
87 |
-
def predict(user_input,company):
|
88 |
-
|
89 |
-
filter = "dataset/"+company+"-10-k-2023.pdf"
|
90 |
-
relevant_document_chunks = retriever.invoke(user_input, filter=filter)
|
91 |
-
context_list = [f"Page {doc.metadata['page']}: {doc.page_content}" for doc in docs]
|
92 |
-
|
93 |
-
|
94 |
-
# Create context_for_query
|
95 |
-
context_for_query = ".".join(context_list)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# Create messages
|
100 |
-
prompt = [
|
101 |
-
{'role':'system','content': qna_system_message},
|
102 |
-
{'role':'user', 'content': qna_user_message_template.format(context=context_for_query,
|
103 |
-
question=user_input
|
104 |
-
)
|
105 |
-
}
|
106 |
-
]
|
107 |
-
|
108 |
-
|
109 |
-
# Get response from the LLM
|
110 |
-
try:
|
111 |
-
response = client.chat.completions.create(
|
112 |
-
model="mlabonne/NeuralHermes-2.5-Mistral-7B",
|
113 |
-
messages=prompt,
|
114 |
-
temperature=0
|
115 |
-
)
|
116 |
-
|
117 |
-
prediction = response.choices[0].message.content
|
118 |
-
except Exception as e:
|
119 |
-
prediction = f'Sorry, I encountered the following error: \n {e}'
|
120 |
-
|
121 |
-
print(prediction)
|
122 |
-
|
123 |
-
|
124 |
-
# While the prediction is made, log both the inputs and outputs to a local log file
|
125 |
-
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
126 |
-
# access
|
127 |
-
|
128 |
-
with scheduler.lock:
|
129 |
-
with log_file.open("a") as f:
|
130 |
-
f.write(json.dumps(
|
131 |
-
{
|
132 |
-
'user_input': user_input,
|
133 |
-
'retrieved_context': context_for_query,
|
134 |
-
'model_response': prediction
|
135 |
-
}
|
136 |
-
))
|
137 |
-
f.write("\n")
|
138 |
-
|
139 |
-
return prediction
|
140 |
-
|
141 |
-
# Set-up the Gradio UI
|
142 |
-
# Add text box and radio button to the interface
|
143 |
-
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
|
144 |
-
|
145 |
-
textbox = gr.Textbox(placeholder = "Enter your query here")
|
146 |
-
company = gr.Radio(choices=["IBM", "META", "aws", "google", "msft"], label="Company")
|
147 |
-
|
148 |
-
# Create the interface
|
149 |
-
# For the inputs parameter of Interface provide [textbox,company]
|
150 |
-
demo = gr.Interface(
|
151 |
-
inputs = [textbox,company],
|
152 |
-
fn = predict,
|
153 |
-
outputs = "text",
|
154 |
-
description="This web API presents an interface to ask questions on contents of of IBM, META, AWS, GOOGLE and MSFT 10-K reports for the year 2023",
|
155 |
-
article= "Note that questions that are not relevant to the aforermentioned companies' 10-K reports will not be answered",
|
156 |
-
title = "Q&A for IBM, META, AWS, GOOG & MSFT 10-K Statements",
|
157 |
-
examples = [["Has the company made any significant acquisitions in the AI space, and how are these acquisitions being integrated into the company's strategy?", ""],
|
158 |
-
["How much capital has been allocated towards AI research and development?", ""],
|
159 |
-
["What initiatives has the company implemented to address ethical concerns sorrounding AI, such as faireness, accountability, and privacy?", ""],
|
160 |
-
["How does the company plan to differentiate itself in the AI space relave to competitors?", ""]],
|
161 |
-
concurrency_limit=16
|
162 |
-
)
|
163 |
-
|
164 |
-
demo.queue()
|
165 |
-
demo.launch(share=True, debug =False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|