Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
# Modell laden
|
8 |
-
model = tf.keras.models.load_model('pokemon_classifier.keras')
|
9 |
-
|
10 |
-
def classify_image(image):
|
11 |
-
# Bild vorverarbeiten
|
12 |
-
image = Image.fromarray(image.astype('uint8')).convert('RGB')
|
13 |
-
image = image.resize((150, 150)) # Anpassung der Größe an das Modell
|
14 |
-
image = np.array(image) / 255.0 # Normalisieren
|
15 |
-
image = np.expand_dims(image, axis=0) # Hinzufügen der Batch-Dimension
|
16 |
-
|
17 |
-
# Vorhersage machen
|
18 |
-
prediction = model.predict(image).flatten()
|
19 |
-
classes = ['Abra', 'Ditto', 'Gengar'] # Namen der Klassen
|
20 |
-
|
21 |
-
# Wahrscheinlichkeiten mit Klassen verbinden und formatieren
|
22 |
-
return {classes[i]: float(prediction[i]) for i in range(len(classes))}
|
23 |
-
|
24 |
-
# Gradio-Interface erstellen
|
25 |
-
input_image = gr.Image()
|
26 |
-
iface = gr.Interface(
|
27 |
-
fn=classify_image,
|
28 |
-
inputs=input_image,
|
29 |
-
outputs=gr.Label(num_top_classes=3),
|
30 |
-
examples=["pokemon/Abra/00000000.png", "pokemon/Ditto/00000000.jpg", "pokemon/Gengar/00000000.png"], # Beispiele hinzufügen
|
31 |
-
description="Upload an image of a Pokémon to classify it as Pikachu, Charmander, or Bulbasaur."
|
32 |
-
)
|
33 |
-
|
34 |
-
# Interface starten
|
35 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
# Modell laden
|
8 |
+
model = tf.keras.models.load_model('pokemon_classifier.keras')
|
9 |
+
|
10 |
+
def classify_image(image):
|
11 |
+
# Bild vorverarbeiten
|
12 |
+
image = Image.fromarray(image.astype('uint8')).convert('RGB')
|
13 |
+
image = image.resize((150, 150)) # Anpassung der Größe an das Modell
|
14 |
+
image = np.array(image) / 255.0 # Normalisieren
|
15 |
+
image = np.expand_dims(image, axis=0) # Hinzufügen der Batch-Dimension
|
16 |
+
|
17 |
+
# Vorhersage machen
|
18 |
+
prediction = model.predict(image).flatten()
|
19 |
+
classes = ['Abra', 'Ditto', 'Gengar'] # Namen der Klassen
|
20 |
+
|
21 |
+
# Wahrscheinlichkeiten mit Klassen verbinden und formatieren
|
22 |
+
return {classes[i]: float(prediction[i]) for i in range(len(classes))}
|
23 |
+
|
24 |
+
# Gradio-Interface erstellen
|
25 |
+
input_image = gr.Image()
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=classify_image,
|
28 |
+
inputs=input_image,
|
29 |
+
outputs=gr.Label(num_top_classes=3),
|
30 |
+
examples=["pokemon/Abra/00000000.png", "pokemon/Ditto/00000000.jpg", "pokemon/Gengar/00000000.png"], # Beispiele hinzufügen
|
31 |
+
description="Upload an image of a Pokémon to classify it as Pikachu, Charmander, or Bulbasaur."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Interface starten
|
35 |
iface.launch()
|