chnk58hoang commited on
Commit
e076ae8
·
1 Parent(s): 02a1a35

initial commit

Browse files
Files changed (7) hide show
  1. .gitignore +1 -0
  2. README.md +4 -4
  3. app.py +31 -0
  4. requirements.txt +5 -0
  5. utils.py +94 -0
  6. vits/best_model_vits_22951.pth +3 -0
  7. vits/vits_config.json +255 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: VietnameseVITS
3
- emoji: 📚
4
- colorFrom: red
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 4.4.1
8
  app_file: app.py
 
1
  ---
2
+ title: MyOwnTexttospeech
3
+ emoji: 🐢
4
+ colorFrom: pink
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 4.4.1
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from utils import load_model, normalize_text
4
+
5
+
6
+ vits_model = load_model()
7
+ vits_model.tts('Alo')
8
+
9
+ def text_to_speech(text):
10
+ text = normalize_text(text)
11
+ audio = vits_model.tts(text)
12
+
13
+ audio = np.array(audio)
14
+ return 16000,audio
15
+
16
+ gr.Interface(
17
+ fn=text_to_speech,
18
+ inputs="text",
19
+ outputs="audio",
20
+
21
+ examples=[
22
+ "Trăm năm trong cõi người ta, chữ tài chữ mệnh khéo là ghét nhau.",
23
+ "Đoạn trường tân thanh, thường được biết đến với cái tên đơn giản là Truyện Kiều, là một truyện thơ của đại thi hào Nguyễn Du",
24
+ "Lục Vân Tiên quê ở huyện Đông Thành, khôi ngô tuấn tú, tài kiêm văn võ. Nghe tin triều đình mở khoa thi, Vân Tiên từ giã thầy xuống núi đua tài.",
25
+ "Lê Quý Đôn, tên thuở nhỏ là Lê Danh Phương, là vị quan thời Lê trung hưng, cũng là nhà thơ và được mệnh danh là nhà bác học lớn của Việt Nam trong thời phong kiến",
26
+ "Tất cả mọi người đều sinh ra có quyền bình đẳng. Tạo hóa cho họ những quyền không ai có thể xâm phạm được; trong những quyền ấy, có quyền được sống, quyền tự do và quyền mưu cầu hạnh phúc.",
27
+ ],
28
+ theme="default",
29
+ ).launch(debug=False)
30
+
31
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==4.4.1
2
+ numpy==1.24.3
3
+ regex==2023.10.3
4
+ TTS==0.17.8
5
+
utils.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from TTS.api import TTS
2
+ import unicodedata
3
+ import regex
4
+
5
+
6
+
7
+
8
+ num_re = regex.compile(r"([0-9.,]*[0-9])")
9
+ digits = ["không", "một", "hai", "ba", "bốn", "năm", "sáu", "bảy", "tám", "chín"]
10
+
11
+ def read_number(num: str) -> str:
12
+ if len(num) == 1:
13
+ return digits[int(num)]
14
+ elif len(num) == 2 and num.isdigit():
15
+ n = int(num)
16
+ end = digits[n % 10]
17
+ if n == 10:
18
+ return "mười"
19
+ if n % 10 == 5:
20
+ end = "lăm"
21
+ if n % 10 == 0:
22
+ return digits[n // 10] + " mươi"
23
+ elif n < 20:
24
+ return "mười " + end
25
+ else:
26
+ if n % 10 == 1:
27
+ end = "mốt"
28
+ return digits[n // 10] + " mươi " + end
29
+ elif len(num) == 3 and num.isdigit():
30
+ n = int(num)
31
+ if n % 100 == 0:
32
+ return digits[n // 100] + " trăm"
33
+ elif num[1] == "0":
34
+ return digits[n // 100] + " trăm lẻ " + digits[n % 100]
35
+ else:
36
+ return digits[n // 100] + " trăm " + read_number(num[1:])
37
+ elif len(num) >= 4 and len(num) <= 6 and num.isdigit():
38
+ n = int(num)
39
+ n1 = n // 1000
40
+ return read_number(str(n1)) + " ngàn " + read_number(num[-3:])
41
+ elif "," in num:
42
+ n1, n2 = num.split(",")
43
+ return read_number(n1) + " phẩy " + read_number(n2)
44
+ elif "." in num:
45
+ parts = num.split(".")
46
+ if len(parts) == 2:
47
+ if parts[1] == "000":
48
+ return read_number(parts[0]) + " ngàn"
49
+ elif parts[1].startswith("00"):
50
+ end = digits[int(parts[1][2:])]
51
+ return read_number(parts[0]) + " ngàn lẻ " + end
52
+ else:
53
+ return read_number(parts[0]) + " ngàn " + read_number(parts[1])
54
+ elif len(parts) == 3:
55
+ return (
56
+ read_number(parts[0])
57
+ + " triệu "
58
+ + read_number(parts[1])
59
+ + " ngàn "
60
+ + read_number(parts[2])
61
+ )
62
+ return num
63
+
64
+
65
+ def load_model():
66
+ config_path = 'vits/vits_config.json'
67
+ checkpoint_path = 'vits/best_model_vits_22951.pth'
68
+
69
+ tts = TTS(model_name='my_tts',
70
+ model_path=checkpoint_path,
71
+ config_path=config_path)
72
+
73
+ return tts
74
+
75
+
76
+ def normalize_text(text):
77
+ # lowercase
78
+ text = text.lower()
79
+ # unicode normalize
80
+ text = unicodedata.normalize("NFKC", text)
81
+ text = text.replace(".", "")
82
+ text = text.replace(",", "")
83
+ text = text.replace(";", "")
84
+ text = text.replace(":", "")
85
+ text = text.replace("!", "")
86
+ text = text.replace("?", "")
87
+ text = text.replace("(", "")
88
+
89
+ text = num_re.sub(r" \1 ", text)
90
+ words = text.split()
91
+ words = [read_number(w) if num_re.fullmatch(w) else w for w in words]
92
+ text = " ".join(words)
93
+
94
+ return text
vits/best_model_vits_22951.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dfc9c3865ccf2359258c5c6e2145365e643ba3be0208b57efedb6bfac20e428
3
+ size 997817797
vits/vits_config.json ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_path": "/kaggle/working/",
3
+ "logger_uri": null,
4
+ "run_name": "vits_viet",
5
+ "project_name": null,
6
+ "run_description": "\ud83d\udc38Coqui trainer run.",
7
+ "print_step": 25,
8
+ "plot_step": 100,
9
+ "model_param_stats": false,
10
+ "wandb_entity": null,
11
+ "dashboard_logger": "tensorboard",
12
+ "save_on_interrupt": true,
13
+ "log_model_step": null,
14
+ "save_step": 10000,
15
+ "save_n_checkpoints": 5,
16
+ "save_checkpoints": true,
17
+ "save_all_best": false,
18
+ "save_best_after": 10000,
19
+ "target_loss": null,
20
+ "print_eval": true,
21
+ "test_delay_epochs": -1,
22
+ "run_eval": true,
23
+ "run_eval_steps": null,
24
+ "distributed_backend": "nccl",
25
+ "distributed_url": "tcp://localhost:54321",
26
+ "mixed_precision": true,
27
+ "precision": "fp16",
28
+ "epochs": 2000,
29
+ "batch_size": 32,
30
+ "eval_batch_size": 16,
31
+ "grad_clip": [
32
+ 1000,
33
+ 1000
34
+ ],
35
+ "scheduler_after_epoch": true,
36
+ "lr": 0.001,
37
+ "optimizer": "AdamW",
38
+ "optimizer_params": {
39
+ "betas": [
40
+ 0.8,
41
+ 0.99
42
+ ],
43
+ "eps": 1e-09,
44
+ "weight_decay": 0.01
45
+ },
46
+ "lr_scheduler": null,
47
+ "lr_scheduler_params": null,
48
+ "use_grad_scaler": false,
49
+ "allow_tf32": false,
50
+ "cudnn_enable": true,
51
+ "cudnn_deterministic": false,
52
+ "cudnn_benchmark": false,
53
+ "training_seed": 54321,
54
+ "model": "vits",
55
+ "num_loader_workers": 4,
56
+ "num_eval_loader_workers": 4,
57
+ "use_noise_augment": false,
58
+ "audio": {
59
+ "fft_size": 1024,
60
+ "sample_rate": 16000,
61
+ "win_length": 1024,
62
+ "hop_length": 256,
63
+ "num_mels": 80,
64
+ "mel_fmin": 0,
65
+ "mel_fmax": null
66
+ },
67
+ "use_phonemes": false,
68
+ "phonemizer": null,
69
+ "phoneme_language": null,
70
+ "compute_input_seq_cache": true,
71
+ "text_cleaner": null,
72
+ "enable_eos_bos_chars": false,
73
+ "test_sentences_file": "",
74
+ "phoneme_cache_path": null,
75
+ "characters": {
76
+ "characters_class": "TTS.tts.utils.text.characters.Graphemes",
77
+ "vocab_dict": null,
78
+ "pad": "<PAD>",
79
+ "eos": "<EOS>",
80
+ "bos": "<BOS>",
81
+ "blank": "<BLNK>",
82
+ "characters": "abcdefghijklmnopqrstuvwxyz\u00e0\u00e1\u00e2\u00e3\u00e8\u00e9\u00ea\u00ec\u00ed\u00f2\u00f3\u00f4\u00f5\u00f9\u00fa\u00fd\u0103\u0111\u0129\u0169\u01a1\u01b0\u1ea1\u1ea3\u1ea5\u1ea7\u1ea9\u1eab\u1ead\u1eaf\u1eb1\u1eb3\u1eb5\u1eb7\u1eb9\u1ebb\u1ebd\u1ebf\u1ec1\u1ec3\u1ec5\u1ec7\u1ec9\u1ecb\u1ecd\u1ecf\u1ed1\u1ed3\u1ed5\u1ed7\u1ed9\u1edb\u1edd\u1edf\u1ee1\u1ee3\u1ee5\u1ee7\u1ee9\u1eeb\u1eed\u1eef\u1ef1\u1ef3\u1ef5\u1ef7\u1ef9",
83
+ "punctuations": "!'(),-.:;? ",
84
+ "phonemes": null,
85
+ "is_unique": true,
86
+ "is_sorted": true
87
+ },
88
+ "add_blank": true,
89
+ "batch_group_size": 5,
90
+ "loss_masking": null,
91
+ "min_audio_len": 1,
92
+ "max_audio_len": Infinity,
93
+ "min_text_len": 1,
94
+ "max_text_len": Infinity,
95
+ "compute_f0": false,
96
+ "compute_energy": false,
97
+ "compute_linear_spec": true,
98
+ "precompute_num_workers": 0,
99
+ "start_by_longest": false,
100
+ "shuffle": false,
101
+ "drop_last": false,
102
+ "datasets": [
103
+ {
104
+ "formatter": "",
105
+ "dataset_name": "",
106
+ "path": "/kaggle/input/infore/inforedataset",
107
+ "meta_file_train": "metadata.tsv",
108
+ "ignored_speakers": null,
109
+ "language": "",
110
+ "phonemizer": "",
111
+ "meta_file_val": "",
112
+ "meta_file_attn_mask": ""
113
+ }
114
+ ],
115
+ "test_sentences": [
116
+ "xin ch\u00e0o, t\u1ea5t c\u1ea3 m\u1ecdi ng\u01b0\u1eddi"
117
+ ],
118
+ "eval_split_max_size": null,
119
+ "eval_split_size": 0.01,
120
+ "use_speaker_weighted_sampler": false,
121
+ "speaker_weighted_sampler_alpha": 1.0,
122
+ "use_language_weighted_sampler": false,
123
+ "language_weighted_sampler_alpha": 1.0,
124
+ "use_length_weighted_sampler": false,
125
+ "length_weighted_sampler_alpha": 1.0,
126
+ "model_args": {
127
+ "num_chars": 108,
128
+ "out_channels": 513,
129
+ "spec_segment_size": 32,
130
+ "hidden_channels": 192,
131
+ "hidden_channels_ffn_text_encoder": 768,
132
+ "num_heads_text_encoder": 2,
133
+ "num_layers_text_encoder": 6,
134
+ "kernel_size_text_encoder": 3,
135
+ "dropout_p_text_encoder": 0.1,
136
+ "dropout_p_duration_predictor": 0.5,
137
+ "kernel_size_posterior_encoder": 5,
138
+ "dilation_rate_posterior_encoder": 1,
139
+ "num_layers_posterior_encoder": 16,
140
+ "kernel_size_flow": 5,
141
+ "dilation_rate_flow": 1,
142
+ "num_layers_flow": 4,
143
+ "resblock_type_decoder": "1",
144
+ "resblock_kernel_sizes_decoder": [
145
+ 3,
146
+ 7,
147
+ 11
148
+ ],
149
+ "resblock_dilation_sizes_decoder": [
150
+ [
151
+ 1,
152
+ 3,
153
+ 5
154
+ ],
155
+ [
156
+ 1,
157
+ 3,
158
+ 5
159
+ ],
160
+ [
161
+ 1,
162
+ 3,
163
+ 5
164
+ ]
165
+ ],
166
+ "upsample_rates_decoder": [
167
+ 8,
168
+ 8,
169
+ 2,
170
+ 2
171
+ ],
172
+ "upsample_initial_channel_decoder": 512,
173
+ "upsample_kernel_sizes_decoder": [
174
+ 16,
175
+ 16,
176
+ 4,
177
+ 4
178
+ ],
179
+ "periods_multi_period_discriminator": [
180
+ 2,
181
+ 3,
182
+ 5,
183
+ 7,
184
+ 11
185
+ ],
186
+ "use_sdp": true,
187
+ "noise_scale": 1.0,
188
+ "inference_noise_scale": 0.667,
189
+ "length_scale": 1,
190
+ "noise_scale_dp": 1.0,
191
+ "inference_noise_scale_dp": 1.0,
192
+ "max_inference_len": null,
193
+ "init_discriminator": true,
194
+ "use_spectral_norm_disriminator": false,
195
+ "use_speaker_embedding": false,
196
+ "num_speakers": 0,
197
+ "speakers_file": null,
198
+ "d_vector_file": null,
199
+ "speaker_embedding_channels": 256,
200
+ "use_d_vector_file": false,
201
+ "d_vector_dim": 0,
202
+ "detach_dp_input": true,
203
+ "use_language_embedding": false,
204
+ "embedded_language_dim": 4,
205
+ "num_languages": 0,
206
+ "language_ids_file": null,
207
+ "use_speaker_encoder_as_loss": false,
208
+ "speaker_encoder_config_path": "",
209
+ "speaker_encoder_model_path": "",
210
+ "condition_dp_on_speaker": true,
211
+ "freeze_encoder": false,
212
+ "freeze_DP": false,
213
+ "freeze_PE": false,
214
+ "freeze_flow_decoder": false,
215
+ "freeze_waveform_decoder": false,
216
+ "encoder_sample_rate": null,
217
+ "interpolate_z": true,
218
+ "reinit_DP": false,
219
+ "reinit_text_encoder": false
220
+ },
221
+ "lr_gen": 0.0001,
222
+ "lr_disc": 0.0001,
223
+ "lr_scheduler_gen": "ExponentialLR",
224
+ "lr_scheduler_gen_params": {
225
+ "gamma": 0.999875,
226
+ "last_epoch": -1
227
+ },
228
+ "lr_scheduler_disc": "ExponentialLR",
229
+ "lr_scheduler_disc_params": {
230
+ "gamma": 0.999875,
231
+ "last_epoch": -1
232
+ },
233
+ "kl_loss_alpha": 1.0,
234
+ "disc_loss_alpha": 1.0,
235
+ "gen_loss_alpha": 1.0,
236
+ "feat_loss_alpha": 1.0,
237
+ "mel_loss_alpha": 45.0,
238
+ "dur_loss_alpha": 1.0,
239
+ "speaker_encoder_loss_alpha": 1.0,
240
+ "return_wav": true,
241
+ "use_weighted_sampler": false,
242
+ "weighted_sampler_attrs": null,
243
+ "weighted_sampler_multipliers": null,
244
+ "r": 1,
245
+ "num_speakers": 0,
246
+ "use_speaker_embedding": false,
247
+ "speakers_file": null,
248
+ "speaker_embedding_channels": 256,
249
+ "language_ids_file": null,
250
+ "use_language_embedding": false,
251
+ "use_d_vector_file": false,
252
+ "d_vector_file": null,
253
+ "d_vector_dim": 0,
254
+ "github_branch": "* master"
255
+ }