File size: 1,851 Bytes
cacb27a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# LARS optimizer, implementation from MoCo v3:
# https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
import torch
class LARS(torch.optim.Optimizer):
"""
LARS optimizer, no rate scaling or weight decay for parameters <= 1D.
"""
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, trust_coefficient=0.001):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, trust_coefficient=trust_coefficient)
super().__init__(params, defaults)
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g['params']:
dp = p.grad
if dp is None:
continue
if p.ndim > 1: # if not normalization gamma/beta or bias
dp = dp.add(p, alpha=g['weight_decay'])
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(param_norm > 0.,
torch.where(update_norm > 0,
(g['trust_coefficient'] * param_norm / update_norm), one),
one)
dp = dp.mul(q)
param_state = self.state[p]
if 'mu' not in param_state:
param_state['mu'] = torch.zeros_like(p)
mu = param_state['mu']
mu.mul_(g['momentum']).add_(dp)
p.add_(mu, alpha=-g['lr']) |