Spaces:
Runtime error
Runtime error
# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). | |
import gradio as gr | |
import numpy as np | |
import torch | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor | |
from PIL import ImageDraw | |
from utils.tools_gradio import fast_process | |
import copy | |
import argparse | |
parser = argparse.ArgumentParser( | |
description="Host EdgeSAM as a local web service." | |
) | |
parser.add_argument( | |
"--checkpoint", | |
default="weights/edge_sam_3x.pth", | |
type=str, | |
help="The path to the EdgeSAM model checkpoint." | |
) | |
parser.add_argument( | |
"--enable-everything-mode", | |
action="store_true", | |
help="Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the " | |
"decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected.", | |
) | |
parser.add_argument( | |
"--server-name", | |
default="0.0.0.0", | |
type=str, | |
help="The server address that this demo will be hosted on." | |
) | |
parser.add_argument( | |
"--port", | |
default=8080, | |
type=int, | |
help="The port that this demo will be hosted on." | |
) | |
args = parser.parse_args() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic") | |
sam = sam.to(device=device) | |
sam.eval() | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
predictor = SamPredictor(sam) | |
# Description | |
title = "<center><strong><font size='8'>EdgeSAM<font></strong></center>" | |
description_p = """ # Instructions for point mode | |
1. Upload an image or click one of the provided examples. | |
2. Select the point type. | |
3. Click once or multiple times on the image to indicate the object of interest. | |
4. Click Start to get the segmentation mask. | |
5. The clear button clears all the points. | |
6. The reset button resets both points and the image. | |
""" | |
description_b = """ # Instructions for box mode | |
1. Upload an image or click one of the provided examples. | |
2. Click twice on the image (diagonal points of the box). | |
3. Click Start to get the segmentation mask. | |
4. The clear button clears the box. | |
5. The reset button resets both the box and the image. | |
""" | |
description_e = """ # Everything mode is NOT recommended. | |
Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected. | |
""" | |
examples = [ | |
["web_demo/assets/picture1.jpg"], | |
["web_demo/assets/picture2.jpg"], | |
["web_demo/assets/picture3.jpg"], | |
["web_demo/assets/picture4.jpg"], | |
] | |
default_example = examples[0] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
global_points = [] | |
global_point_label = [] | |
global_box = [] | |
global_image = None | |
def reset(): | |
global global_points | |
global global_point_label | |
global global_box | |
global global_image | |
global_points = [] | |
global_point_label = [] | |
global_box = [] | |
global_image = None | |
return None, None | |
def reset_all(): | |
global global_points | |
global global_point_label | |
global global_box | |
global global_image | |
global_points = [] | |
global_point_label = [] | |
global_box = [] | |
global_image = None | |
if args.enable_everything_mode: | |
return None, None, None, None, None, None | |
else: | |
return None, None, None, None | |
def clear(): | |
global global_points | |
global global_point_label | |
global global_box | |
global global_image | |
global_points = [] | |
global_point_label = [] | |
global_box = [] | |
return global_image, None | |
def on_image_upload(image, input_size=1024): | |
global global_points | |
global global_point_label | |
global global_box | |
global global_image | |
global_points = [] | |
global_point_label = [] | |
global_box = [] | |
input_size = int(input_size) | |
w, h = image.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
image = image.resize((new_w, new_h)) | |
global_image = copy.deepcopy(image) | |
print("Image changed") | |
nd_image = np.array(global_image) | |
predictor.set_image(nd_image) | |
return image, None | |
def convert_box(xyxy): | |
min_x = min(xyxy[0][0], xyxy[1][0]) | |
max_x = max(xyxy[0][0], xyxy[1][0]) | |
min_y = min(xyxy[0][1], xyxy[1][1]) | |
max_y = max(xyxy[0][1], xyxy[1][1]) | |
xyxy[0][0] = min_x | |
xyxy[1][0] = max_x | |
xyxy[0][1] = min_y | |
xyxy[1][1] = max_y | |
return xyxy | |
def get_points_with_draw(image, label, evt: gr.SelectData): | |
global global_points | |
global global_point_label | |
# global global_image | |
x, y = evt.index[0], evt.index[1] | |
# x = int(x * scale) | |
# y = int(y * scale) | |
point_radius, point_color = 10, (97, 217, 54) if label == "Positive" else (237, 34, 13) | |
global_points.append([x, y]) | |
global_point_label.append(1 if label == "Positive" else 0) | |
print(f'global_points: {global_points}') | |
print(f'global_point_label: {global_point_label}') | |
draw = ImageDraw.Draw(image) | |
draw.ellipse( | |
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], | |
fill=point_color, | |
) | |
return image | |
def get_box_with_draw(image, evt: gr.SelectData): | |
global global_box | |
# global global_image | |
x, y = evt.index[0], evt.index[1] | |
# x = float(x * scale) | |
# y = float(y * scale) | |
point_radius, point_color, box_outline = 5, (97, 217, 54), 5 | |
box_color = (0, 255, 0) | |
if len(global_box) == 0: | |
global_box.append([x, y]) | |
elif len(global_box) == 1: | |
global_box.append([x, y]) | |
elif len(global_box) == 2: | |
global_box = [[x, y]] | |
print(f'global_box: {global_box}') | |
draw = ImageDraw.Draw(image) | |
draw.ellipse( | |
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], | |
fill=point_color, | |
) | |
if len(global_box) == 2: | |
global_box = convert_box(global_box) | |
xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1]) | |
draw.rectangle( | |
xy, | |
outline=box_color, | |
width=box_outline | |
) | |
return image | |
def segment_with_points( | |
image, | |
input_size=1024, | |
better_quality=False, | |
withContours=True, | |
use_retina=True, | |
mask_random_color=False, | |
): | |
global global_points | |
global global_point_label | |
global_points_np = np.array(global_points) | |
global_point_label_np = np.array(global_point_label) | |
if global_points_np.size == 0 and global_point_label_np.size == 0: | |
print("No point selected") | |
return image, image | |
num_multimask_outputs = 4 | |
masks, scores, logits = predictor.predict( | |
point_coords=global_points_np, | |
point_labels=global_point_label_np, | |
num_multimask_outputs=num_multimask_outputs, | |
use_stability_score=True | |
) | |
print(f'scores: {scores}') | |
area = masks.sum(axis=(1, 2)) | |
print(f'area: {area}') | |
if num_multimask_outputs == 1: | |
annotations = masks | |
else: | |
annotations = np.expand_dims(masks[scores.argmax()], axis=0) | |
seg = fast_process( | |
annotations=annotations, | |
image=image, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours, | |
) | |
return image, seg | |
def segment_with_box( | |
image, | |
input_size=1024, | |
better_quality=False, | |
withContours=True, | |
use_retina=True, | |
mask_random_color=False, | |
): | |
global global_box | |
global_box_np = np.array(global_box) | |
if global_box_np.size < 4: | |
print("No box selected") | |
return image, image | |
masks, scores, logits = predictor.predict( | |
box=global_box_np, | |
num_multimask_outputs=1, | |
) | |
annotations = masks | |
seg = fast_process( | |
annotations=annotations, | |
image=image, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours, | |
) | |
return image, seg | |
def segment_everything( | |
image, | |
input_size=1024, | |
better_quality=False, | |
withContours=True, | |
use_retina=True, | |
mask_random_color=True, | |
): | |
nd_image = np.array(image) | |
masks = mask_generator.generate(nd_image) | |
annotations = masks | |
seg = fast_process( | |
annotations=annotations, | |
image=image, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours, | |
) | |
return seg | |
cond_img_p = gr.Image(label="Input with points", type="pil") | |
cond_img_b = gr.Image(label="Input with box", type="pil") | |
cond_img_e = gr.Image(label="Input (everything)", type="pil") | |
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil") | |
segm_img_b = gr.Image(label="Segmented Image with box", interactive=False, type="pil") | |
segm_img_e = gr.Image(label="Segmented Everything", interactive=False, type="pil") | |
if args.enable_everything_mode: | |
all_outputs = [cond_img_p, cond_img_b, cond_img_e, segm_img_p, segm_img_b, segm_img_e] | |
else: | |
all_outputs = [cond_img_p, cond_img_b, segm_img_p, segm_img_b] | |
with gr.Blocks(css=css, title="EdgeSAM") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Title | |
gr.Markdown(title) | |
with gr.Tab("Point mode") as tab_p: | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_p.render() | |
with gr.Column(scale=1): | |
segm_img_p.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
add_or_remove = gr.Radio( | |
["Positive", "Negative"], | |
value="Positive", | |
label="Point Type" | |
) | |
with gr.Column(): | |
segment_btn_p = gr.Button( | |
"Start", variant="primary" | |
) | |
clear_btn_p = gr.Button("Clear", variant="secondary") | |
reset_btn_p = gr.Button("Reset", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_p], | |
outputs=[cond_img_p, segm_img_p], | |
examples_per_page=4, | |
fn=on_image_upload, | |
run_on_click=True | |
) | |
with gr.Column(): | |
# Description | |
gr.Markdown(description_p) | |
with gr.Tab("Box mode") as tab_b: | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_b.render() | |
with gr.Column(scale=1): | |
segm_img_b.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
segment_btn_b = gr.Button( | |
"Start", variant="primary" | |
) | |
clear_btn_b = gr.Button("Clear", variant="secondary") | |
reset_btn_b = gr.Button("Reset", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_b], | |
outputs=[cond_img_b, segm_img_b], | |
examples_per_page=4, | |
fn=on_image_upload, | |
run_on_click=True | |
) | |
with gr.Column(): | |
# Description | |
gr.Markdown(description_b) | |
if args.enable_everything_mode: | |
with gr.Tab("Everything mode") as tab_e: | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_e.render() | |
with gr.Column(scale=1): | |
segm_img_e.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
segment_btn_e = gr.Button( | |
"Start", variant="primary" | |
) | |
reset_btn_e = gr.Button("Reset", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_e], | |
examples_per_page=4, | |
) | |
with gr.Column(): | |
# Description | |
gr.Markdown(description_e) | |
cond_img_p.upload(on_image_upload, cond_img_p, [cond_img_p, segm_img_p]) | |
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) | |
segment_btn_p.click( | |
segment_with_points, inputs=[cond_img_p], outputs=[cond_img_p, segm_img_p] | |
) | |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) | |
reset_btn_p.click(reset, outputs=[cond_img_p, segm_img_p]) | |
tab_p.select(fn=reset_all, outputs=all_outputs) | |
cond_img_b.select(get_box_with_draw, [cond_img_b], cond_img_b) | |
segment_btn_b.click( | |
segment_with_box, inputs=[cond_img_b], outputs=[cond_img_b, segm_img_b] | |
) | |
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b]) | |
reset_btn_b.click(reset, outputs=[cond_img_b, segm_img_b]) | |
tab_b.select(fn=reset_all, outputs=all_outputs) | |
if args.enable_everything_mode: | |
segment_btn_e.click( | |
segment_everything, inputs=[cond_img_e], outputs=segm_img_e | |
) | |
reset_btn_e.click(reset, outputs=[cond_img_e, segm_img_e]) | |
tab_e.select(fn=reset_all, outputs=all_outputs) | |
demo.queue() | |
# demo.launch(server_name=args.server_name, server_port=args.port) | |
demo.launch() |