# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). import gradio as gr import numpy as np import torch from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor from PIL import ImageDraw from utils.tools_gradio import fast_process import copy import argparse parser = argparse.ArgumentParser( description="Host EdgeSAM as a local web service." ) parser.add_argument( "--checkpoint", default="weights/edge_sam_3x.pth", type=str, help="The path to the EdgeSAM model checkpoint." ) parser.add_argument( "--enable-everything-mode", action="store_true", help="Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the " "decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected.", ) parser.add_argument( "--server-name", default="0.0.0.0", type=str, help="The server address that this demo will be hosted on." ) parser.add_argument( "--port", default=8080, type=int, help="The port that this demo will be hosted on." ) args = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic") sam = sam.to(device=device) sam.eval() mask_generator = SamAutomaticMaskGenerator(sam) predictor = SamPredictor(sam) # Description title = "
EdgeSAM
" description_p = """ # Instructions for point mode 1. Upload an image or click one of the provided examples. 2. Select the point type. 3. Click once or multiple times on the image to indicate the object of interest. 4. Click Start to get the segmentation mask. 5. The clear button clears all the points. 6. The reset button resets both points and the image. """ description_b = """ # Instructions for box mode 1. Upload an image or click one of the provided examples. 2. Click twice on the image (diagonal points of the box). 3. Click Start to get the segmentation mask. 4. The clear button clears the box. 5. The reset button resets both the box and the image. """ description_e = """ # Everything mode is NOT recommended. Since EdgeSAM follows the same encoder-decoder architecture as SAM, the everything mode will infer the decoder 32x32=1024 times, which is inefficient, thus a longer processing time is expected. """ examples = [ ["assets/picture1.jpg"], ["assets/picture2.jpg"], ["assets/picture3.jpg"], ["assets/picture4.jpg"], ] default_example = examples[0] css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" global_points = [] global_point_label = [] global_box = [] global_image = None def reset(): global global_points global global_point_label global global_box global global_image global_points = [] global_point_label = [] global_box = [] global_image = None return None, None def reset_all(): global global_points global global_point_label global global_box global global_image global_points = [] global_point_label = [] global_box = [] global_image = None if args.enable_everything_mode: return None, None, None, None, None, None else: return None, None, None, None def clear(): global global_points global global_point_label global global_box global global_image global_points = [] global_point_label = [] global_box = [] return global_image, None def on_image_upload(image, input_size=1024): global global_points global global_point_label global global_box global global_image global_points = [] global_point_label = [] global_box = [] input_size = int(input_size) w, h = image.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) image = image.resize((new_w, new_h)) global_image = copy.deepcopy(image) print("Image changed") nd_image = np.array(global_image) predictor.set_image(nd_image) return image, None def convert_box(xyxy): min_x = min(xyxy[0][0], xyxy[1][0]) max_x = max(xyxy[0][0], xyxy[1][0]) min_y = min(xyxy[0][1], xyxy[1][1]) max_y = max(xyxy[0][1], xyxy[1][1]) xyxy[0][0] = min_x xyxy[1][0] = max_x xyxy[0][1] = min_y xyxy[1][1] = max_y return xyxy def get_points_with_draw(image, label, evt: gr.SelectData): global global_points global global_point_label # global global_image x, y = evt.index[0], evt.index[1] # x = int(x * scale) # y = int(y * scale) point_radius, point_color = 10, (97, 217, 54) if label == "Positive" else (237, 34, 13) global_points.append([x, y]) global_point_label.append(1 if label == "Positive" else 0) print(f'global_points: {global_points}') print(f'global_point_label: {global_point_label}') draw = ImageDraw.Draw(image) draw.ellipse( [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color, ) return image def get_box_with_draw(image, evt: gr.SelectData): global global_box # global global_image x, y = evt.index[0], evt.index[1] # x = float(x * scale) # y = float(y * scale) point_radius, point_color, box_outline = 5, (97, 217, 54), 5 box_color = (0, 255, 0) if len(global_box) == 0: global_box.append([x, y]) elif len(global_box) == 1: global_box.append([x, y]) elif len(global_box) == 2: global_box = [[x, y]] print(f'global_box: {global_box}') draw = ImageDraw.Draw(image) draw.ellipse( [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color, ) if len(global_box) == 2: global_box = convert_box(global_box) xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1]) draw.rectangle( xy, outline=box_color, width=box_outline ) return image def segment_with_points( image, input_size=1024, better_quality=False, withContours=True, use_retina=True, mask_random_color=False, ): global global_points global global_point_label global_points_np = np.array(global_points) global_point_label_np = np.array(global_point_label) if global_points_np.size == 0 and global_point_label_np.size == 0: print("No point selected") return image, image num_multimask_outputs = 4 masks, scores, logits = predictor.predict( point_coords=global_points_np, point_labels=global_point_label_np, num_multimask_outputs=num_multimask_outputs, use_stability_score=True ) print(f'scores: {scores}') area = masks.sum(axis=(1, 2)) print(f'area: {area}') if num_multimask_outputs == 1: annotations = masks else: annotations = np.expand_dims(masks[scores.argmax()], axis=0) seg = fast_process( annotations=annotations, image=image, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours, ) return image, seg def segment_with_box( image, input_size=1024, better_quality=False, withContours=True, use_retina=True, mask_random_color=False, ): global global_box global_box_np = np.array(global_box) if global_box_np.size < 4: print("No box selected") return image, image masks, scores, logits = predictor.predict( box=global_box_np, num_multimask_outputs=1, ) annotations = masks seg = fast_process( annotations=annotations, image=image, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours, ) return image, seg def segment_everything( image, input_size=1024, better_quality=False, withContours=True, use_retina=True, mask_random_color=True, ): nd_image = np.array(image) masks = mask_generator.generate(nd_image) annotations = masks seg = fast_process( annotations=annotations, image=image, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours, ) return seg cond_img_p = gr.Image(label="Input with points", type="pil") cond_img_b = gr.Image(label="Input with box", type="pil") cond_img_e = gr.Image(label="Input (everything)", type="pil") segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil") segm_img_b = gr.Image(label="Segmented Image with box", interactive=False, type="pil") segm_img_e = gr.Image(label="Segmented Everything", interactive=False, type="pil") if args.enable_everything_mode: all_outputs = [cond_img_p, cond_img_b, cond_img_e, segm_img_p, segm_img_b, segm_img_e] else: all_outputs = [cond_img_p, cond_img_b, segm_img_p, segm_img_b] with gr.Blocks(css=css, title="EdgeSAM") as demo: with gr.Row(): with gr.Column(scale=1): # Title gr.Markdown(title) with gr.Tab("Point mode") as tab_p: # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_p.render() with gr.Column(scale=1): segm_img_p.render() # Submit & Clear with gr.Row(): with gr.Column(): with gr.Row(): add_or_remove = gr.Radio( ["Positive", "Negative"], value="Positive", label="Point Type" ) with gr.Column(): segment_btn_p = gr.Button( "Start", variant="primary" ) clear_btn_p = gr.Button("Clear", variant="secondary") reset_btn_p = gr.Button("Reset", variant="secondary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples( examples=examples, inputs=[cond_img_p], outputs=[cond_img_p, segm_img_p], examples_per_page=4, fn=on_image_upload, run_on_click=True ) with gr.Column(): # Description gr.Markdown(description_p) with gr.Tab("Box mode") as tab_b: # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_b.render() with gr.Column(scale=1): segm_img_b.render() # Submit & Clear with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): segment_btn_b = gr.Button( "Start", variant="primary" ) clear_btn_b = gr.Button("Clear", variant="secondary") reset_btn_b = gr.Button("Reset", variant="secondary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples( examples=examples, inputs=[cond_img_b], outputs=[cond_img_b, segm_img_b], examples_per_page=4, fn=on_image_upload, run_on_click=True ) with gr.Column(): # Description gr.Markdown(description_b) if args.enable_everything_mode: with gr.Tab("Everything mode") as tab_e: # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_e.render() with gr.Column(scale=1): segm_img_e.render() # Submit & Clear with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): segment_btn_e = gr.Button( "Start", variant="primary" ) reset_btn_e = gr.Button("Reset", variant="secondary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples( examples=examples, inputs=[cond_img_e], examples_per_page=4, ) with gr.Column(): # Description gr.Markdown(description_e) cond_img_p.upload(on_image_upload, cond_img_p, [cond_img_p, segm_img_p]) cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) segment_btn_p.click( segment_with_points, inputs=[cond_img_p], outputs=[cond_img_p, segm_img_p] ) clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) reset_btn_p.click(reset, outputs=[cond_img_p, segm_img_p]) tab_p.select(fn=reset_all, outputs=all_outputs) cond_img_b.select(get_box_with_draw, [cond_img_b], cond_img_b) segment_btn_b.click( segment_with_box, inputs=[cond_img_b], outputs=[cond_img_b, segm_img_b] ) clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b]) reset_btn_b.click(reset, outputs=[cond_img_b, segm_img_b]) tab_b.select(fn=reset_all, outputs=all_outputs) if args.enable_everything_mode: segment_btn_e.click( segment_everything, inputs=[cond_img_e], outputs=segm_img_e ) reset_btn_e.click(reset, outputs=[cond_img_e, segm_img_e]) tab_e.select(fn=reset_all, outputs=all_outputs) demo.queue() # demo.launch(server_name=args.server_name, server_port=args.port) demo.launch()