Trial-Connect / app.py
chowdhut's picture
Update app.py
c5b767e
raw
history blame
211 kB
########### AGENT: Clincialtrial.gov ###################################################################################################
##Gradio App: TRIAL CONNECT
#Author: Tamer Chowdhury' Sept-Nov 2023
#tamer.chowdhury@gmail.com
##################################################################################################################################
import gradio as gr
from gradio import Interface
from gradio import Dropdown
import io
import re
import pandas as pd
import textwrap
from IPython.display import display
import requests
from IPython.core.display import display_markdown
########### Clinical Trials. gov API for study fileds with Recruiting Trials Only ###################################
import aiohttp
import asyncio
async def fetch(session, url, params):
async with session.get(url, params=params) as response:
return await response.text()
#############################################################################################################################################################
async def get_nct_ids (lead_sponsor_name=None, disease_area=None, overall_status= None, location_country=None, NCTId=None, max_records=None, blocks=30):
base_url = "https://clinicaltrials.gov/api/query/study_fields"
fields = "NCTId,OrgStudyId,BriefTitle,Condition,Phase,OverallStatus,PrimaryCompletionDate,EnrollmentCount,StudyType,StudyPopulation,\
LocationCountry,LocationCity,DesignPrimaryPurpose,LocationFacility,ArmGroupLabel,LeadSponsorName,InterventionName,PrimaryOutcomeMeasure,\
StartDate,CollaboratorName"
params = {
"fields": fields,
"fmt": "csv"
}
## Status is Recruiting
#overall_status='Recruiting'
#overall_status='Not yet recruiting'
#############################
if NCTId:
params["expr"] = f"{NCTId}"
else:
# overall_status = overall_status.replace(" ", "+")
if disease_area:
disease_area = disease_area.replace(" ", "+")
if lead_sponsor_name:
lead_sponsor_name = lead_sponsor_name.replace(" ", "+")
if location_country:
location_country = location_country.replace(" ", "+")
if disease_area and lead_sponsor_name:
# params["expr"] = f"{disease_area}+AND+{overall_status}+AND+{lead_sponsor_name}"
params["expr"] = f"{disease_area}+AND+{lead_sponsor_name}"
elif disease_area:
# params["expr"] = f"{disease_area}+AND+{overall_status}"
params["expr"] = f"{disease_area}"
elif lead_sponsor_name:
# params["expr"] = f"{lead_sponsor_name}+AND+{overall_status}"
params["expr"] = f"{lead_sponsor_name}"
### to ensure it starts from 1 to 1000 and increment
all_trials = []
max_trials_per_request = 1000
async with aiohttp.ClientSession() as session:
tasks = []
for i in range(1, blocks + 1): # Change the range to start from 1
min_rank = (i - 1) * max_trials_per_request + 1 # Subtract 1 from i to get the correct min_rank
# print( min_rank )
max_rank = i * max_trials_per_request # Simplify the max_rank calculation
# print( max_rank )
params_copy = params.copy()
params_copy["min_rnk"] = min_rank
params_copy["max_rnk"] = max_rank
task = fetch(session, base_url, params_copy)
tasks.append(task)
responses = await asyncio.gather(*tasks)
# Create a list to store the DataFrames
trials_dfs = []
# Fetch data for each block and store it in a separate DataFrame
for i, response in enumerate(responses):
skip_rows = 10 if not NCTId else 9
if len(response.strip().splitlines()) > 1:
interim_df = pd.read_csv(io.StringIO(response), skiprows=skip_rows)
else:
interim_df = pd.DataFrame()
# Print the number of records in the current DataFrame
print(f"Number of records in interim_df{i + 1}: {len(interim_df)}") # renamed to interim_df
# Add the current DataFrame to the list
trials_dfs.append(interim_df) # renamed to interim_df
# Concatenate all the DataFrames
trials_final_df = pd.concat(trials_dfs, ignore_index=True)
# Print the number of records in the final DataFrame
print(f"Number of records returned from all the Block Request: {len(trials_final_df)}")
recruiting_trials = trials_final_df
recruiting_trials_list = []
#############################
if NCTId:
##############################################
for index, row in recruiting_trials.iterrows():
# print(f"Checking row {index}: OverallStatus={row['OverallStatus']}, provided overall_status={overall_status}")
#if not NCTId or (NCTId and row['OverallStatus'] == overall_status):
# if row['OverallStatus'] == overall_status:
trial_info = {'NCTId': row['NCTId'],
'Phase': row['Phase'],
'OrgStudyId': row['OrgStudyId'],
'Status': row['OverallStatus'],
'Condition': row['Condition'],
'CompletionDate': row['PrimaryCompletionDate'],
'EnrollmentCount': row['EnrollmentCount'],
'StudyType': row['StudyType'],
'Arm': row['ArmGroupLabel'],
'Drug': row['InterventionName'],
'Country': row['LocationCountry'],
'City': row['LocationCity'],
'Site': row['LocationFacility'],
'StudyPopulation': row['StudyPopulation'],
'Sponsor': row['LeadSponsorName'],
'Collaborator': row['CollaboratorName'],
'StartDate': row['StartDate'],
'PrimaryMeasure': row['PrimaryOutcomeMeasure'],
'Purpose': row['DesignPrimaryPurpose'],
'BriefTitle': row['BriefTitle']}
# Print the overall_status and the length of recruiting_trials_list
#print(f"Overall status: {overall_status}")
#print(f"Number of trials with status '{overall_status}': {len(recruiting_trials_list)}")
recruiting_trials_list.append(trial_info)
else:
##############################################
for index, row in recruiting_trials.iterrows():
# print(f"Checking row {index}: OverallStatus={row['OverallStatus']}, provided overall_status={overall_status}")
#if not NCTId or (NCTId and row['OverallStatus'] == overall_status):
if row['OverallStatus'] == overall_status:
trial_info = {'NCTId': row['NCTId'],
'Phase': row['Phase'],
'OrgStudyId': row['OrgStudyId'],
'Status': row['OverallStatus'],
'Condition': row['Condition'],
'CompletionDate': row['PrimaryCompletionDate'],
'EnrollmentCount': row['EnrollmentCount'],
'StudyType': row['StudyType'],
'Arm': row['ArmGroupLabel'],
'Drug': row['InterventionName'],
'Country': row['LocationCountry'],
'City': row['LocationCity'],
'Site': row['LocationFacility'],
'StudyPopulation': row['StudyPopulation'],
'Sponsor': row['LeadSponsorName'],
'Collaborator': row['CollaboratorName'],
'StartDate': row['StartDate'],
'PrimaryMeasure': row['PrimaryOutcomeMeasure'],
'Purpose': row['DesignPrimaryPurpose'],
'BriefTitle': row['BriefTitle']}
# Print the overall_status and the length of recruiting_trials_list
#print(f"Overall status: {overall_status}")
#print(f"Number of trials with status '{overall_status}': {len(recruiting_trials_list)}")
recruiting_trials_list.append(trial_info)
return recruiting_trials_list
##########################################################################################################################################################
#########################################################################################################
## API For Inclusions
import requests
import re
def get_formatted_inclusion_criteria(nct_id):
base_url = "https://clinicaltrials.gov/api/query/full_studies?expr="
study_fields = "&fields=EligibilityCriteria"
fmt = "&fmt=json"
# Construct the API URL
api_url = f"{base_url}{nct_id}{study_fields}{fmt}"
# Send the API request and parse the JSON response
response = requests.get(api_url)
data = response.json()
# Extract the inclusion criteria text
try:
eligibility_criteria = data['FullStudiesResponse']['FullStudies'][0]['Study']['ProtocolSection']['EligibilityModule']['EligibilityCriteria']
#inclusion_criteria = re.split(r'\b(?:Exclusion Criteria:|exclusion criteria)\b', eligibility_criteria, flags=re.IGNORECASE)[0].strip()
#inclusion_criteria = re.split(r'\b(?:Exclusion Criteria)\b', eligibility_criteria, flags=re.IGNORECASE)[0].strip()
inclusion_criteria = re.split(r'\b(?:Exclusion Criteria)\b', eligibility_criteria)[0].strip()
# Split the inclusion criteria into a list
inclusions = re.split('\n+', inclusion_criteria)
# Remove "Inclusion criteria" text if it's present in the list
inclusions = [inclusion for inclusion in inclusions if not re.search(r'\bInclusion\s*Criteria\b', inclusion, flags=re.IGNORECASE)]
# Format the list as a numbered list with periods
formatted_inclusions = [f"{i+1}. {inclusion.strip()}." for i, inclusion in enumerate(inclusions)]
# Join the list into a single string
return "\n".join(formatted_inclusions)
except (IndexError, KeyError):
print(f"Inclusion criteria not found for Trial NCT ID: {nct_id}")
return None
## ############################API For Exclusions###################################################################################################################################################
def get_formatted_exclusion_criteria(nct_id):
base_url = "https://clinicaltrials.gov/api/query/full_studies?expr="
study_fields = "&fields=EligibilityCriteria"
fmt = "&fmt=json"
# Construct the API URL
api_url = f"{base_url}{nct_id}{study_fields}{fmt}"
# Send the API request and parse the JSON response
response = requests.get(api_url)
data = response.json()
# Extract the exclusion criteria text
try:
eligibility_criteria = data['FullStudiesResponse']['FullStudies'][0]['Study']['ProtocolSection']['EligibilityModule']['EligibilityCriteria']
#exclusion_criteria = re.split("(?i)(?:^|\n)exclusion criteria", eligibility_criteria)[-1].strip()
#exclusion_criteria = re.split(r'\b(?:Exclusion Criteria|exclusion criteria)\b', eligibility_criteria, flags=re.IGNORECASE)[1].strip()
#exclusion_criteria = re.split(r'\b(?:Exclusion Criteria)\b', eligibility_criteria, flags=re.IGNORECASE)[1].strip()
exclusion_criteria = re.split(r'\b(?:Exclusion Criteria)\b', eligibility_criteria)[1].strip()
# Split the exclusion criteria into a list
exclusions = re.split('\n+', exclusion_criteria)
# Remove "Exclusion criteria" text if it's present in the list
exclusions = [exclusion for exclusion in exclusions if not re.search(r'\bExclusion\s*Criteria\b', exclusion, flags=re.IGNORECASE)]
# Format the list as a numbered list with periods
formatted_exclusions = [f"{i+1}. {exclusion.strip()}." for i, exclusion in enumerate(exclusions)]
# Join the list into a single string
return "\n".join(formatted_exclusions)
except (IndexError, KeyError):
print(f"Exclusion criteria not found for NCT ID: {nct_id}")
return None
################################# Apply CSS Style to HTML Table ##############################################################################################################
def dataframe_to_html_table(df):
custom_css = """
<style>
.table-container {
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
overflow-x: auto;
overflow-y: auto;
max-height: 400px;
}
.table {
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
border-collapse: collapse;
white-space: nowrap;
}
.table-striped tbody tr:nth-of-type(odd) {
background-color: rgba(0, 0, 0, 0.05);
}
th, td {
padding: 0.75rem;
vertical-align: top;
border-top: 1px solid #dee2e6;
white-space: normal;
overflow-wrap: break-word;
max-width: 150px;
}
/* Set the width of the 'BriefTitle' and 'Arm' columns */
.table td:nth-child(3), .table td:nth-child(11) {
width: 300px;
}
thead th {
position: sticky;
top: 0;
background-color: white;
z-index: 1;
}
thead th::before {
content: "";
position: absolute;
left: 0;
width: 100%;
height: 100%;
border-right: 1px solid #dee2e6;
background-color: white;
z-index: -1;
}
</style>
"""
return custom_css + '<div class="table-container">' + df.to_html(classes="table table-striped", index=False, border=0) + '</div>'
##################################################################################################################################
def format_summary_stats(summary):
formatted_html = f"""
<style>
#summary-output {{
font-weight: bold;
font-size: 20px;
color: black;
}}
</style>
<div id="summary-output">{summary}</div>
"""
return formatted_html
############################ End of Style #############################################################################################
############### Functions to Process the Dataframes of Disease, Conditions, Trial Details####################################
# parse the conditions
import re
import pandas as pd
#######################################################################################################
def split_conditions(df, column_to_split):
# Create a list to store the new rows
new_rows = []
# Iterate through each row in the original dataframe
for index, row in df.iterrows():
# Split the column value by comma or pipe and create a new row for each unique condition
for condition in re.split(',|\|', str(row[column_to_split])):
new_row = {col: row[col] if col != column_to_split else condition.strip() for col in df.columns}
new_rows.append(new_row)
# Create a new dataframe from the list of new rows
temp_df = pd.DataFrame(new_rows)
return temp_df
#########################################################################################################################
def split_drug(df, column_to_split):
# Create a list to store the new rows
new_rows = []
# Iterate through each row in the original dataframe
for index, row in df.iterrows():
# Split the column value by comma or pipe and create a new row for each unique condition
for drug in re.split(',|\|', str(row[column_to_split])):
new_row = {col: row[col] if col != column_to_split else drug.strip() for col in df.columns}
new_rows.append(new_row)
# Create a new dataframe from the list of new rows
temp_df = pd.DataFrame(new_rows)
return temp_df
############################################################################################################################################
#############################################################################################
def split_columns(df, columns_to_split):
# Create a list to store the new dataframes
new_dfs = []
# Iterate through each row in the original dataframe
for index, row in df.iterrows():
# Create a list of dictionaries to store the split values
split_rows = []
# Find the maximum number of pipe-separated values in the columns to split
max_splits = max([len(str(row[col]).split('|')) for col in columns_to_split])
# Iterate through the number of splits
for i in range(max_splits):
# Create a dictionary to store the split values for each column
split_row = {}
# Iterate through the columns to split
for col in columns_to_split:
# Split the column value and store the ith value if it exists, otherwise store None
split_row[col] = str(row[col]).split('|')[i] if i < len(str(row[col]).split('|')) else None
# Add the non-split columns to the dictionary
for col in df.columns:
if col not in columns_to_split:
split_row[col] = row[col]
# Append the dictionary to the list of dictionaries
split_rows.append(split_row)
# Convert the list of dictionaries to a dataframe and append it to the list of new dataframes
new_dfs.append(pd.DataFrame(split_rows))
# Concatenate all the new dataframes
temp_df = pd.concat(new_dfs, ignore_index=True)
# Reorder the columns in the temporary dataframe
temp_df = temp_df[df.columns]
return temp_df
################## Interventional, Observational Trials Lead Sponsor Counts##################################################
def calculate_summary_stats(df, sponsor):
study_types = ["Interventional", "Observational"]
summary_stats = []
sponsor_name = sponsor if sponsor else "All Lead Sponsors"
for study_type in study_types:
df_study_type = df[df['StudyType'] == study_type].copy()
# Convert the 'EnrollmentCount' column to numeric
df_study_type['EnrollmentCount'] = pd.to_numeric(df_study_type['EnrollmentCount'], errors='coerce')
num_trials = len(df_study_type['NCTId'].unique())
unique_conditions = df_study_type['Condition'].unique()
num_conditions = len([condition for condition in unique_conditions if condition != 'Healthy' and condition != 'Adult'])
total_patients = df_study_type.groupby('NCTId')['EnrollmentCount'].first().sum()
formatted_total_patients = format(int(total_patients), ',')
summary_stats.append(f"{num_trials} {study_type} Trials, \
{num_conditions} Conditions, \
{formatted_total_patients} Planned Patients.")
#return f"{sponsor_name} - As Lead Sponsor Recruiting For: <br>" + "<br>".join(summary_stats)
return f"{sponsor_name} - As Lead Sponsor: <br>" + "<br>".join(summary_stats)
############################################################################################################################################
def calculate_summary_stats_collb(df, sponsor):
study_types = ["Interventional", "Observational"]
summary_stats = []
sponsor_name = sponsor if sponsor else "All Collaborators"
for study_type in study_types:
df_study_type = df[df['StudyType'] == study_type].copy()
# Convert the 'EnrollmentCount' column to numeric
df_study_type['EnrollmentCount'] = pd.to_numeric(df_study_type['EnrollmentCount'], errors='coerce')
num_trials = len(df_study_type['NCTId'].unique())
unique_conditions = df_study_type['Condition'].unique()
num_conditions = len([condition for condition in unique_conditions if condition != 'Healthy' and condition != 'Adult'])
total_patients = df_study_type.groupby('NCTId')['EnrollmentCount'].first().sum()
formatted_total_patients = format(int(total_patients), ',')
summary_stats.append(f"{num_trials} {study_type} Trials, \
{num_conditions} Conditions, \
{formatted_total_patients} Planned Patients.")
return f"{sponsor_name} - With Collaborators Recruiting For: <br>" + "<br>".join(summary_stats)
##################################################################################################################
def calculate_summary_stats_sites(df, sponsor, country):
#Filter the data frame by the country if a country is provided
if country:
df = df[df['Country'] == country]
num_trials = len(df['NCTId'].unique())
# Group the data frame by NCTId and StudyType in the desired order
grouped_df = df.groupby(['NCTId', 'StudyType']).first().reset_index()
# Convert the 'EnrollmentCount' column to numeric
grouped_df['EnrollmentCount'] = pd.to_numeric(grouped_df['EnrollmentCount'], errors='coerce')
# Count the number of unique NCTIds for each StudyType
interventional_count = len(grouped_df[grouped_df['StudyType'] == 'Interventional']['NCTId'].unique())
observational_count = len(grouped_df[grouped_df['StudyType'] == 'Observational']['NCTId'].unique())
# Count the number of unique countries for each StudyType
interventional_countries = df[df['StudyType'] == 'Interventional']['Country'].nunique()
observational_countries = df[df['StudyType'] == 'Observational']['Country'].nunique()
# Count the number of unique sites for each StudyType, grouped by Country, City, and Site
interventional_grouped = df[df['StudyType'] == 'Interventional'].groupby(['Country', 'City', 'Site'])['NCTId'].nunique().reset_index().shape[0]
observational_grouped = df[df['StudyType'] == 'Observational'].groupby(['Country', 'City', 'Site'])['NCTId'].nunique().reset_index().shape[0]
# Calculate the sum of enrollment counts for each StudyType
interventional_patients = int(grouped_df[grouped_df['StudyType'] == 'Interventional']['EnrollmentCount'].sum())
observational_patients = int(grouped_df[grouped_df['StudyType'] == 'Observational']['EnrollmentCount'].sum())
formatted_interventional_patients = format(interventional_patients, ',')
formatted_observational_patients = format(observational_patients, ',')
sponsor_name = sponsor if sponsor else "All Sponsors"
country_name = country if country else "All Countries"
return f"{sponsor_name} <br> {interventional_count} Interventional Trials, in {interventional_countries} Country, at {interventional_grouped} Sites, \
Recruiting: {formatted_interventional_patients} Planned Patients. <br>\
{observational_count} Observational Trials, in {observational_countries} Country, at {observational_grouped} Sites"
#{observational_count} Observational Trials, in {observational_countries} Country, at {observational_grouped} Sites, Recruiting: {formatted_observational_patients} Planned Patients."
################################################ GRADIO STARTS HERE #########################################################
#Wrapper Function called from Interfce to get input , output
async def gradio_wrapper_nct(sponsor=None, condition=None, NCTId=None, country=None, status = None):
# Check if disease, condition, sponsor, and NCTId are provided
if condition and sponsor:
recruiting_trials = await get_nct_ids(disease_area=condition, lead_sponsor_name=sponsor, overall_status = status)
elif condition:
recruiting_trials = await get_nct_ids(disease_area=condition, overall_status = status)
elif sponsor:
recruiting_trials = await get_nct_ids(lead_sponsor_name=sponsor, overall_status = status)
elif NCTId:
recruiting_trials = await get_nct_ids(NCTId=NCTId, overall_status = status)
# print("Recruiting trials for NCTId:", recruiting_trials) # Add this line to debug
else:
return pd.DataFrame(), "No condition, sponsor, or trial NCT Id provided"
trial_info_list = []
for trial in recruiting_trials:
trial_info = {'Sponsor': trial['Sponsor'],
'Collaborator': trial['Collaborator'],
'Status': trial['Status'],
'Drug': trial['Drug'],
'StudyType': trial['StudyType'],
'Phase': trial['Phase'],
'Site': trial['Site'],
'Country': trial['Country'],
'City': trial['City'],
'NCTId': trial['NCTId'],
'OrgStudyId': trial['OrgStudyId'],
'Condition': trial['Condition'],
'StartDate': trial['StartDate'],
'CompletionDate': trial['CompletionDate'],
'EnrollmentCount': trial['EnrollmentCount'],
'PrimaryMeasure': trial['PrimaryMeasure'],
'Purpose': trial['Purpose'],
'Arm': trial['Arm'],
'BriefTitle': trial['BriefTitle']}
trial_info_list.append(trial_info)
# Check if trial_info_list is empty
if not trial_info_list:
return None, None, None, None, None, None
import pandas as pd
clinical_trials_gov = pd.DataFrame(trial_info_list, columns=[ 'NCTId','OrgStudyId','Status','BriefTitle','Condition', 'Drug','Phase','StudyType','StartDate', 'CompletionDate','EnrollmentCount', 'Arm','Purpose', 'PrimaryMeasure', \
'Sponsor','Collaborator'])
## Take care of NaN
clinical_trials_gov.fillna("Not Available", inplace=True)
clinical_trials_gov = clinical_trials_gov.sort_values(by=[ 'StudyType', 'Phase' , 'CompletionDate','EnrollmentCount'], ascending=[ True, False,True,False])
# Convert the DataFrame to an HTML table
html_table = dataframe_to_html_table(clinical_trials_gov)
# now move to include country
#clinical_trials_gov_add = pd.DataFrame(trial_info_list, columns=[ 'StudyType','Phase','NCTId', 'Site','Country','City','Zip','Condition','Sponsor','Collaborator','Drug','StartDate', 'CompletionDate','EnrollmentCount'])
clinical_trials_gov_add = pd.DataFrame(trial_info_list, columns=[ 'StudyType','Phase','NCTId','OrgStudyId','Status', 'BriefTitle', 'Site','Country','City','Condition','Sponsor','Collaborator','Drug','StartDate', 'CompletionDate','EnrollmentCount'])
## Address NaN
clinical_trials_gov_add.fillna("Not Available", inplace=True)
clinical_trials_gov_add = clinical_trials_gov_add.sort_values(by=[ 'StudyType', 'Phase' , 'EnrollmentCount','CompletionDate', 'Country'], ascending=[ True, False,False,True,True])
# print("Preparing dataframe before split")
# Create a DataFrame for conditions
clinical_trials_gov_conditions = pd.DataFrame(trial_info_list, columns=['NCTId', 'BriefTitle','OrgStudyId','Phase','Status','StudyType','Condition', 'Drug','StartDate', 'CompletionDate','EnrollmentCount','Sponsor', 'Collaborator'])
# Split the 'Condition' column in clinical_trials_gov_conditions
clinical_trials_gov_conditions = split_conditions(clinical_trials_gov_conditions, 'Condition')
# print("Dataframe after condition split")
#address NaN
clinical_trials_gov_conditions.fillna("Not Available", inplace=True)
# Create a DataFrame for drugs
clinical_trials_gov_drugs = pd.DataFrame(trial_info_list, columns=['Status','NCTId', 'BriefTitle','OrgStudyId','Status','Phase','StudyType','Condition', 'Drug','StartDate', 'CompletionDate','EnrollmentCount','Sponsor', 'Collaborator'])
# Split the 'Drug' column in clinical_trials_gov_conditions
clinical_trials_gov_drugs = split_conditions(clinical_trials_gov_drugs, 'Drug')
clinical_trials_gov_drugs.fillna("Not Available", inplace=True)
############################################## ##########################################################################################
# Filter and sort the conditions DataFrame
# Add the filtering condition for Sponsor and Collaborator
# Add the filtering condition for Sponsor and Collaborator
if sponsor:
df1 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Sponsor'] == sponsor]
df1_1 = df1[(df1['Collaborator'] != 'Not Available') &
(~df1['Collaborator'].isnull())]
df2 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Collaborator'] == sponsor]
### Now move primary sponsors to collaborators: ( that is non BI sponsor to replace BI as now collaborator)
df2['Collaborator'] = df2['Sponsor']
df3 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Collaborator'].str.contains(f'(^|\|){sponsor}(\||$)', na=False, flags=re.IGNORECASE, regex=True)]
df3 = df3[df3['Collaborator'] != sponsor]
#print(df3)
## Now add sponsors to collaborators
df3['Collaborator'] = df3['Sponsor'] + '|' + df3['Collaborator']
#df3['Collaborator'] = df3['Sponsor']
clinical_trials_gov_conditions = df1
clinical_trials_gov_conditions_collb = pd.concat([df1_1,df2, df3], ignore_index=True)
if sponsor:
df1 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Sponsor'] == sponsor]
df1_1 = df1[(df1['Collaborator'] != 'Not Available') &
(~df1['Collaborator'].isnull())]
##########################################################################################################
df2 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Collaborator'] == sponsor]
### Now copy sponsors to collaborators:
df2['Collaborator'] = df2['Sponsor']
##########################################################################################################
df3 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Collaborator'].str.contains(f'(^|\|){sponsor}(\||$)', na=False, flags=re.IGNORECASE, regex=True)]
df3 = df3[df3['Collaborator'] != sponsor]
## Now add sponsors to collaborators
df3['Collaborator'] = df3['Sponsor'] + '|' + df3['Collaborator']
#df3['Collaborator'] = df3['Sponsor']
clinical_trials_gov_drugs = df1
clinical_trials_gov_drugs_collb = pd.concat([df1_1,df2, df3], ignore_index=True)
###############################################################################################################################################
# Convert the filtered DataFrame to an HTML table
#html_table_add = dataframe_to_html_table(country_site_city_df)
# Convert the DataFrame to an HTML table
html_table_conditions = dataframe_to_html_table(clinical_trials_gov_conditions)
# Convert the DataFrame to an HTML table
html_table_drugs = dataframe_to_html_table(clinical_trials_gov_drugs)
if sponsor:
# Convert the DataFrame to an HTML table
html_table_conditions_collb = dataframe_to_html_table(clinical_trials_gov_conditions_collb)
# Convert the DataFrame to an HTML table
html_table_drugs_collb = dataframe_to_html_table(clinical_trials_gov_drugs_collb)
else:
empty_df = pd.DataFrame()
html_table_conditions_collb = empty_df.to_html(index=False, header=True, border=0, table_id="empty_table")
html_table_drugs_collb = empty_df.to_html(index=False, header=True, border=0, table_id="empty_table")
########################################################################################################################################
# Calculate the summary statistics
# print("Calcualting Stats")
summary_stats_pre = calculate_summary_stats(clinical_trials_gov_conditions, sponsor)
summary_stats = format_summary_stats(summary_stats_pre)
if sponsor:
summary_stats_pre_collb = calculate_summary_stats_collb(clinical_trials_gov_conditions_collb, sponsor)
summary_stats_collb = format_summary_stats(summary_stats_pre_collb)
else:
summary_stats_collb =''
# Calculate Site Summary
#summary_stats_sites_pre = calculate_summary_stats_sites(country_site_city_df, sponsor, country)
#summary_stats_sites = format_summary_stats(summary_stats_sites_pre)
# print("Done Stats")
return summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs
#Wrapper Function called from Interfce to get input , output
async def gradio_wrapper_nct_spn(sponsor=None, condition=None, NCTId=None, country=None, status = None):
# Check if disease, condition, sponsor, and NCTId are provided
if condition and sponsor:
recruiting_trials = await get_nct_ids(disease_area=condition, lead_sponsor_name=sponsor, overall_status= status)
elif condition:
recruiting_trials = await get_nct_ids(disease_area=condition, overall_status= status)
elif sponsor:
recruiting_trials = await get_nct_ids(lead_sponsor_name=sponsor, overall_status= status)
elif NCTId:
recruiting_trials = await get_nct_ids(NCTId=NCTId, overall_status = status)
# print("Recruiting trials for NCTId:", recruiting_trials) # Add this line to debug
else:
return pd.DataFrame(), "No condition, sponsor, or trial NCT Id provided"
trial_info_list = []
for trial in recruiting_trials:
trial_info = {'Sponsor': trial['Sponsor'],
'Collaborator': trial['Collaborator'],
'Drug': trial['Drug'],
'StudyType': trial['StudyType'],
'Phase': trial['Phase'],
'Status': trial['Status'],
'Site': trial['Site'],
'Country': trial['Country'],
'City': trial['City'],
# 'Zip': trial['Zip'],
'NCTId': trial['NCTId'],
'OrgStudyId': trial['OrgStudyId'],
'Condition': trial['Condition'],
'StartDate': trial['StartDate'],
'CompletionDate': trial['CompletionDate'],
'EnrollmentCount': trial['EnrollmentCount'],
'PrimaryMeasure': trial['PrimaryMeasure'],
'Purpose': trial['Purpose'],
'Arm': trial['Arm'],
'BriefTitle': trial['BriefTitle']}
trial_info_list.append(trial_info)
# Check if trial_info_list is empty
if not trial_info_list:
return None, None, None, None, None, None
import pandas as pd
clinical_trials_gov = pd.DataFrame(trial_info_list, columns=[ 'NCTId','OrgStudyId','Status','BriefTitle','Condition', 'Drug','Phase','StudyType','StartDate', 'CompletionDate','EnrollmentCount', 'Arm','Purpose', 'PrimaryMeasure', \
'Sponsor','Collaborator'])
## Take care of NaN
clinical_trials_gov.fillna("Not Available", inplace=True)
clinical_trials_gov = clinical_trials_gov.sort_values(by=[ 'StudyType', 'Phase' , 'CompletionDate','EnrollmentCount'], ascending=[ True, False,True,False])
# Convert the DataFrame to an HTML table
html_table = dataframe_to_html_table(clinical_trials_gov)
# now move to include country
#clinical_trials_gov_add = pd.DataFrame(trial_info_list, columns=[ 'StudyType','Phase','NCTId', 'Site','Country','City','Zip','Condition','Sponsor','Collaborator','Drug','StartDate', 'CompletionDate','EnrollmentCount'])
clinical_trials_gov_add = pd.DataFrame(trial_info_list, columns=[ 'StudyType','Phase','NCTId','OrgStudyId','Status', 'BriefTitle','Site','Country','City','Condition','Sponsor','Collaborator','Drug','StartDate', 'CompletionDate','EnrollmentCount'])
## Address NaN
clinical_trials_gov_add.fillna("Not Available", inplace=True)
clinical_trials_gov_add = clinical_trials_gov_add.sort_values(by=[ 'StudyType', 'Phase' , 'EnrollmentCount','CompletionDate', 'Country'], ascending=[ True, False,False,True,True])
# print("Preparing dataframe before split")
# Create a DataFrame for conditions
clinical_trials_gov_conditions = pd.DataFrame(trial_info_list, columns=['NCTId', 'OrgStudyId','Status','BriefTitle','Phase','StudyType','Condition', 'Drug','EnrollmentCount','Sponsor', 'Collaborator'])
# Split the 'Condition' column in clinical_trials_gov_conditions
clinical_trials_gov_conditions = split_conditions(clinical_trials_gov_conditions, 'Condition')
# print("Dataframe after condition split")
#address NaN
clinical_trials_gov_conditions.fillna("Not Available", inplace=True)
# Create a DataFrame for drugs
clinical_trials_gov_drugs = pd.DataFrame(trial_info_list, columns=['NCTId','OrgStudyId', 'Status','BriefTitle','Phase','StudyType','Condition', 'Drug','EnrollmentCount','Sponsor', 'Collaborator'])
# Split the 'Drug' column in clinical_trials_gov_conditions
clinical_trials_gov_drugs = split_conditions(clinical_trials_gov_drugs, 'Drug')
# print("Dataframe after drug split")
# Split the 'Condition' column in clinical_trials_gov_conditions
#clinical_trials_gov_drugs = split_conditions(clinical_trials_gov_drugs, 'Condition')
#print("Prepared dataframe after condition split on drug ? why ?")
#address NaN
clinical_trials_gov_drugs.fillna("Not Available", inplace=True)
# print("Preparing Country City Site split")
columns_to_split = ['Site', 'Country', 'City']
#if not clinical_trials_gov_add.empty:
country_site_city_df = split_columns(clinical_trials_gov_add, columns_to_split)
## Ensure no NaN after Split
country_site_city_df.fillna("Not Available", inplace=True)
# print("Done Country City Site split")
# Filter the modified DataFrame by country if provided
if country:
# modified_df = modified_df[modified_df['Country'] == country]
country_site_city_df = country_site_city_df[country_site_city_df['Country'] == country]
############################################## ##########################################################################################
# Filter and sort the conditions DataFrame
# Add the filtering condition for Sponsor and Collaborator
# Add the filtering condition for Sponsor and Collaborator
if sponsor:
df1 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Sponsor'] == sponsor]
df1_1 = df1[(df1['Collaborator'] != 'Not Available') &
(~df1['Collaborator'].isnull())]
df2 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Collaborator'] == sponsor]
### Now move primary sponsors to collaborators: ( that is non BI sponsor to replace BI as now collaborator)
df2['Collaborator'] = df2['Sponsor']
df3 = clinical_trials_gov_conditions[clinical_trials_gov_conditions['Collaborator'].str.contains(f'(^|\|){sponsor}(\||$)', na=False, flags=re.IGNORECASE, regex=True)]
df3 = df3[df3['Collaborator'] != sponsor]
#print(df3)
## Now add sponsors to collaborators
df3['Collaborator'] = df3['Sponsor'] + '|' + df3['Collaborator']
#df3['Collaborator'] = df3['Sponsor']
clinical_trials_gov_conditions = df1
clinical_trials_gov_conditions_collb = pd.concat([df1_1,df2, df3], ignore_index=True)
if sponsor:
df1 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Sponsor'] == sponsor]
df1_1 = df1[(df1['Collaborator'] != 'Not Available') &
(~df1['Collaborator'].isnull())]
##########################################################################################################
df2 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Collaborator'] == sponsor]
### Now copy sponsors to collaborators:
df2['Collaborator'] = df2['Sponsor']
##########################################################################################################
df3 = clinical_trials_gov_drugs[clinical_trials_gov_drugs['Collaborator'].str.contains(f'(^|\|){sponsor}(\||$)', na=False, flags=re.IGNORECASE, regex=True)]
df3 = df3[df3['Collaborator'] != sponsor]
## Now add sponsors to collaborators
df3['Collaborator'] = df3['Sponsor'] + '|' + df3['Collaborator']
#df3['Collaborator'] = df3['Sponsor']
clinical_trials_gov_drugs = df1
clinical_trials_gov_drugs_collb = pd.concat([df1_1,df2, df3], ignore_index=True)
#country_site_city_df
if sponsor:
df1 = country_site_city_df[country_site_city_df['Sponsor'] == sponsor]
df1_1 = df1[(df1['Collaborator'] != 'Not Available') & (~df1['Collaborator'].isnull())]
df2 = country_site_city_df[country_site_city_df['Collaborator'] == sponsor]
### Now copy sponsors to collaborators:
df2['Collaborator'] = df2['Sponsor']
#df3 = country_site_city_df[country_site_city_df['Collaborator'].str.contains(f'(\|)?{sponsor}(\|)?', na=False, flags=re.IGNORECASE, regex=True)]
df3 = country_site_city_df[country_site_city_df['Collaborator'].str.contains(f'(^|\|){sponsor}(\||$)', na=False, flags=re.IGNORECASE, regex=True)]
df3 = df3[df3['Collaborator'] != sponsor]
## Now add sponsors to collaborators
#df3['Collaborator'] = df3['Sponsor'] + '|' + df3['Collaborator']
country_site_city_df = df1
country_site_city_df_collb = pd.concat([ df1_1,df2, df3], ignore_index=True)
#####################################################################################################################################################################
## This only includes data for a specific sponsor and for the collaborators
# Convert the filtered DataFrame to an HTML table
html_table_add = dataframe_to_html_table(country_site_city_df)
# Convert the DataFrame to an HTML table
html_table_conditions = dataframe_to_html_table(clinical_trials_gov_conditions)
# Convert the DataFrame to an HTML table
html_table_drugs = dataframe_to_html_table(clinical_trials_gov_drugs)
######################################################################################################################################
########################################################################################################################################
# Calculate the summary statistics
summary_stats_pre = calculate_summary_stats(clinical_trials_gov_conditions, sponsor)
summary_stats = format_summary_stats(summary_stats_pre)
# Calculate Site Summary
summary_stats_sites_pre = calculate_summary_stats_sites(country_site_city_df, sponsor, country)
summary_stats_sites = format_summary_stats(summary_stats_sites_pre)
return summary_stats, html_table_conditions, html_table, summary_stats_sites,html_table_add,html_table_drugs
###############################################################################################################################################################
##### ################## Start Gradio Interface #########################################################################
################################## Condition Icicle and Sponsor Map ########################
###################################################################
import plotly.graph_objects as go
import pandas as pd
import numpy as np
################################################ TOP 20 Conditions######################################################
##########################################################################################################
def plot_condition_sunburst (df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Convert 'Condition' names to uppercase
df['Condition'] = df['Condition'].str.upper()
# Filter out rows where 'Condition' is "OTHER", "OTHERS", "HEALTHY", or "ADULT"
df = df[~df['Condition'].isin(["OTHER", "OTHERS", "HEALTHY", "ADULT", "CHRONIC'"])]
# Group the data by 'Condition' and count the number of NCTId
df_count = df.groupby('Condition')['NCTId'].nunique().reset_index()
# Sort the DataFrame by Value in descending order and reset the index
df_count = df_count.sort_values('NCTId', ascending=False).reset_index(drop=True)
# Create a DataFrame for the top 30 conditions
top_30_conditions = df_count.head(20)
top_30_conditions = top_30_conditions.rename(columns={'NCTId': 'Number of Trials'})
# Add 'Display' column to top_30_conditions and set its value to 'TOP 30'
top_30_conditions['Display'] = 'TOP 20'
# Create the icicle plot
icicle_fig = px.icicle(top_30_conditions, path=['Condition'], values='Number of Trials',
color='Condition', color_continuous_scale='RdBu',
custom_data=['Condition', 'Number of Trials'])
# Customize the hovertemplate
icicle_fig.update_traces(hovertemplate='%{customdata[0]}<br>Number of Trials: %{customdata[1]}')
# Customize the icicle plot
icicle_fig.update_layout(
title='Top 20 Conditions',
font=dict(family="Arial", size=14, color='black'),
width= 400,
height= 1000,
#autosize=True,
margin=dict(t=50, l=25, r=25, b=25)
)
return icicle_fig
############################################################ Conditions OTHERS ########### ############################################
def plot_condition_others (df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Convert 'Condition' names to uppercase
df['Condition'] = df['Condition'].str.upper()
# Filter out rows where 'Condition' is "OTHER", "OTHERS", "HEALTHY", or "ADULT"
df = df[~df['Condition'].isin(["OTHER", "OTHERS", "HEALTHY", "ADULT"])]
# Group the data by 'Condition' and count the number of NCTId
df_count = df.groupby('Condition')['NCTId'].nunique().reset_index()
# Sort the DataFrame by Value in descending order and reset the index
df_count = df_count.sort_values('NCTId', ascending=False).reset_index(drop=True)
# Create a DataFrame for the top 30 conditions
top_30_conditions = df_count.head(20)
top_30_conditions = top_30_conditions.rename(columns={'NCTId': 'Number of Trials'})
# Add 'Display' column to top_30_conditions and set its value to 'TOP 30'
top_30_conditions['Display'] = 'TOP 30'
# Create a DataFrame for the other conditions by filtering out the rows that are part of the top 30 conditions
other_conditions = df_count[~df_count['Condition'].isin(top_30_conditions['Condition'])]
# Add 'Display' column to other_conditions and set its value to 'OTHERS'
other_conditions['Display'] = 'OTHERS'
other_conditions = other_conditions.rename(columns={'NCTId': 'Number of Trials'})
#print( other_conditions)
# Create the icicle plot
#icicle_fig = px.icicle( other_conditions, path=['Condition'], values='Number of Trials',
# color='Condition', color_continuous_scale='RdBu',
# hover_data=['Condition'])
# Create the icicle plot
icicle_fig = px.icicle(other_conditions, path=['Condition'], values='Number of Trials',
color='Condition', color_continuous_scale='RdBu',
custom_data=['Condition', 'Number of Trials'])
# Customize the hovertemplate
icicle_fig.update_traces(hovertemplate='%{customdata[0]}<br>Number of Trials: %{customdata[1]}')
# Customize the icicle plot
icicle_fig.update_layout(
title='Other Conditions',
font=dict(family="Arial", size=14, color='black'),
width= 400,
height=1000,
# autosize=True,
margin=dict(t=50, l=25, r=25, b=25)
)
return icicle_fig
###################################################################################################################################################
def wrap_text(text, max_chars_per_line):
words = text.split()
lines = []
current_line = []
for word in words:
if len(' '.join(current_line + [word])) <= max_chars_per_line:
current_line.append(word)
else:
lines.append(' '.join(current_line))
current_line = [word]
lines.append(' '.join(current_line))
return '<br>'.join(lines)
##################################################### Sponsor Counts ###########################################
################################################### ############################################################
def wrap_text(text, max_chars_per_line):
return '<br>'.join(textwrap.wrap(text, max_chars_per_line))
def plot_sponsor_collaborator_tree_map(df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Group the data by 'Sponsor' and 'Collaborator' and count the number of unique NCTId
df_count = df.groupby(['Sponsor', 'Collaborator'])['NCTId'].nunique().reset_index()
# Sort the DataFrame by Value in descending order and reset the index
df_count = df_count.sort_values('NCTId', ascending=False).reset_index(drop=True)
# Create a DataFrame for the top 30 sponsors and collaborators
top_30 = df_count.head(30)
top_30 = top_30.rename(columns={'NCTId': 'Number of Trials'})
max_chars_per_line = 10 # Adjust this value according to your needs
top_30['Wrapped Sponsor'] = top_30['Sponsor'].apply(lambda x: wrap_text(x, max_chars_per_line))
top_30['Wrapped Collaborator'] = top_30['Collaborator'].apply(lambda x: wrap_text(x, max_chars_per_line))
# Create the tree map
tree_map_fig = px.treemap(top_30, path=['Wrapped Sponsor', 'Wrapped Collaborator'], values='Number of Trials',
color='Sponsor', color_continuous_scale='RdBu',
custom_data=['Wrapped Sponsor', 'Wrapped Collaborator', 'Number of Trials'])
# Customize the hovertemplate
tree_map_fig.update_traces(hovertemplate='%{customdata[0]}<br>%{customdata[1]}<br>Number of Trials: %{customdata[2]}')
# Customize the tree map
tree_map_fig.update_layout(
title='Lead Sponsors and Collaborators',
font=dict(family="Arial", size=14, color='black'),
width=600,
height=1000
)
# Update the labels to show only the number of trials
tree_map_fig.update_traces(textinfo='value')
return tree_map_fig
#########################################################################################################
def plot_sponsor_tree(df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
#Drop rows where 'Phase' is "Not Applicable" or "UNKNOWN"
#df = df[(df['Phase'] != "Not Applicable") & (df['Phase'] != "UNKNOWN")]
# Group the data by 'Phase' and 'Sponsor' and count the number of unique NCTId
df_count = df.groupby(['Phase', 'Sponsor'])['NCTId'].nunique().reset_index()
#print(df_count)
# Then, sum the counts for each combination of Phase and Sponsor
df_count = df_count.groupby(['Phase', 'Sponsor'])['NCTId'].sum().reset_index()
# Finally, sum the counts for each Sponsor
df_count_tot = df_count.groupby('Sponsor')['NCTId'].sum().reset_index()
# Sort the DataFrame by Value in descending order and reset the index
df_count_tot = df_count_tot.sort_values('NCTId', ascending=False).reset_index(drop=True)
# Create a DataFrame for the top 30 sponsors
top_30_sponsors = df_count_tot.head(30)
top_30_sponsors = top_30_sponsors.rename(columns={'NCTId': 'Number of Trials'})
max_chars_per_line = 10 # Adjust this value according to your needs
top_30_sponsors['Wrapped Sponsor'] = top_30_sponsors['Sponsor'].apply(lambda x: wrap_text(x, max_chars_per_line))
# Create the icicle plot
icicle_fig = px.icicle(top_30_sponsors, path=['Wrapped Sponsor'], values='Number of Trials',
color='Sponsor', color_continuous_scale='RdBu',
custom_data=['Wrapped Sponsor', 'Number of Trials'])
# Customize the hovertemplate
icicle_fig.update_traces(hovertemplate='%{customdata[0]}<br>Number of Trials: %{customdata[1]}')
# Customize the icicle plot
icicle_fig.update_layout(
title='Sponsor',
font=dict(family="Arial", size=14, color='black'),
width= 400,
height=1000
# autosize=True,
# margin=dict(t=50, l=25, r=25, b=25)
)
return icicle_fig
######################################################################################################################################
def plot_collaborator_icicle(df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
# Group the data by 'Phase' and 'Sponsor' and count the number of unique NCTId
df_count = df.groupby(['Phase', 'Collaborator'])['NCTId'].nunique().reset_index()
# Then, sum the counts for each combination of Phase and Sponsor
df_count = df_count.groupby(['Phase', 'Collaborator'])['NCTId'].sum().reset_index()
# Finally, sum the counts for each 'Collaborator'
df_count_tot = df_count.groupby('Collaborator')['NCTId'].sum().reset_index()
# Sort the DataFrame by Value in descending order and reset the index
df_count_tot = df_count_tot.sort_values('NCTId', ascending=False).reset_index(drop=True)
# Create a DataFrame for the top 30 sponsors
top_30_sponsors = df_count_tot.head(30)
top_30_sponsors = top_30_sponsors.rename(columns={'NCTId': 'Number of Trials'})
max_chars_per_line = 10 # Adjust this value according to your needs
top_30_sponsors['Collaborators'] = top_30_sponsors['Collaborator'].apply(lambda x: wrap_text(x, max_chars_per_line))
# Create the icicle plot
icicle_fig = px.icicle(top_30_sponsors, path=['Collaborators'], values='Number of Trials',
color='Collaborator', color_continuous_scale='RdBu',
custom_data=['Collaborators', 'Number of Trials'])
# Customize the hovertemplate
icicle_fig.update_traces(hovertemplate='%{customdata[0]}<br>Number of Trials: %{customdata[1]}')
# Customize the icicle plot
icicle_fig.update_layout(
title='Collaborators',
font=dict(family="Arial", size=14, color='black'),
width= 400,
height=1000
)
return icicle_fig
#################################### DRUGS ########################################################################
#################### Sankey Diagram for Conditions to Drugs to Phase /NCTId#############################################
import pandas as pd
import plotly.graph_objects as go
import random
def random_color():
return f'rgb({random.randint(0, 255)}, {random.randint(0, 255)}, {random.randint(0, 255)})'
##############################################################################################################
def plot_drug_sankey(df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Fill missing values in the 'Phase' column with a placeholder string
df['Phase'] = df['Phase'].fillna('UNKNOWN')
# Sort by Phase
df = df.sort_values(by='Phase')
# Split the conditions
df = split_conditions(df, 'Condition')
conditions = df['Condition'].unique().tolist()
drugs = df['Drug'].unique().tolist()
nct_ids = df['NCTId'].unique().tolist()
study_ids= df['OrgStudyId'].unique().tolist()
phases = df['Phase'].unique().tolist()
# labels = conditions + drugs + nct_ids + phases
labels = conditions + drugs + nct_ids + study_ids+phases
# Assign random colors to each node
colors = [random_color() for _ in range(len(labels))]
source = []
target = []
value = []
for i, condition in enumerate(conditions):
for j, drug in enumerate(drugs, start=len(conditions)):
count = df[(df['Condition'] == condition) & (df['Drug'] == drug)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
for i, drug in enumerate(drugs, start=len(conditions)):
for j, nct_id in enumerate(nct_ids, start=len(conditions) + len(drugs)):
count = df[(df['Drug'] == drug) & (df['NCTId'] == nct_id)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
# Add connections between nct_ids and study_ids
for i, nct_id in enumerate(nct_ids, start=len(conditions) + len(drugs)):
for j, study_id in enumerate(study_ids, start=len(conditions) + len(drugs) + len(nct_ids)):
count = df[(df['NCTId'] == nct_id) & (df['OrgStudyId'] == study_id)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
# Add connections between study_ids and phases
for i, study_id in enumerate(study_ids, start=len(conditions) + len(drugs) + len(nct_ids)):
for j, phase in enumerate(phases, start=len(conditions) + len(drugs) + len(nct_ids) + len(study_ids)):
count = df[(df['OrgStudyId'] == study_id) & (df['Phase'] == phase)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
num_conditions = len(conditions)
if num_conditions <= 2:
height = 400
elif num_conditions <= 10:
# height = 300 + (num_conditions - 2) * (200 / 8) # Linearly scale between 300 and 500
height = 800
elif num_conditions <= 30:
height = 1000
else:
height = 1200 # Linearly scale between 700 and 1000, assuming a max of 100 conditions
height = min(height, 1000) # Cap the height at 1000
fig = go.Figure(data=[go.Sankey(
node=dict(
pad=15,
thickness=15,
line=dict(color="black", width=0.5),
label=labels,
color=colors
),
link=dict(
source=source,
target=target,
value=value
)
)])
fig.update_layout(title_text="Conditions, Drugs, Trial IDs, Phases for Sponsor",
font_size=10, height=height, width=1200)
return fig
###########################################################################################
###########################################################################################################################
#################################################################### TRIALS ##############################
import plotly.graph_objects as go
def plot_condition_treemap_nct_old (df):
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Fill missing values in the 'Phase' column with a placeholder string
df['Phase'] = df['Phase'].fillna('UNKNOWN')
# Sort by Phase
df = df.sort_values(by='Phase')
icicle_df = pd.DataFrame(columns=['ids', 'labels', 'parents'])
# Add the "Conditions" root node
icicle_df = icicle_df.append(pd.DataFrame({
'ids': ["Conditions"],
'labels': ["Conditions"],
'parents': [""]
}), ignore_index=True)
# Add the Condition level
icicle_df = icicle_df.append(pd.DataFrame({
'ids': df['Condition'].unique(),
'labels': df['Condition'].unique(),
'parents': ["Conditions"] * len(df['Condition'].unique())
}), ignore_index=True)
# Add the Phase level
for condition in df['Condition'].unique():
temp_df = df[df['Condition'] == condition]
phases = temp_df['Phase'].unique()
icicle_df = icicle_df.append(pd.DataFrame({
'ids': [f"{condition}-{phase}" for phase in phases],
'labels': phases,
'parents': [condition] * len(phases)
}), ignore_index=True)
# Add the NCTId level
for _, row in df.iterrows():
icicle_df = icicle_df.append(pd.DataFrame({
'ids': [row['NCTId']],
'labels': [row['NCTId']],
'parents': [f"{row['Condition']}-{row['Phase']}"]
}), ignore_index=True)
# Add a new column to icicle_df to store the count of NCTId for each Condition and Phase
icicle_df['nctid_count'] = icicle_df.apply(lambda row: len(df[(df['Condition'] == row['ids']) | (df['Condition'] + '-' + df['Phase'] == row['ids'])]), axis=1)
# Update the hovertemplate
fig = go.Figure(go.Icicle(
ids=icicle_df.ids,
labels=icicle_df.labels,
parents=icicle_df.parents,
root_color="lightgrey",
textfont=dict(size=34, family="Arial"),
hovertemplate="<b>%{label}</b><br><br>%{customdata[0]} %{customdata[1]}<extra></extra>",
customdata=list(zip(icicle_df['nctid_count'], icicle_df['parents'].apply(lambda x: 'Trials' if x == 'Trials' or x in df['Condition'].unique() else '')))
))
# Customize hover information based on the level
fig.update_traces(hovertemplate="<b>%{label}</b><br><br>%{customdata[0]} %{customdata[1]}<extra></extra>",
selector=dict(ids=df['Condition'].unique()))
fig.update_traces(hovertemplate="<b>%{label}</b><br><br>%{customdata[0]} %{customdata[1]}<extra></extra>",
selector=dict(ids=[f"{condition}-{phase}" for condition in df['Condition'].unique() for phase in df[df['Condition'] == condition]['Phase'].unique()]))
fig.update_traces(hovertemplate="", hoverinfo='none', # Set hovertemplate to an empty string and hoverinfo to 'none' for NCTId level
selector=dict(parents=[f"{row['Condition']}-{row['Phase']}" for _, row in df.iterrows()]))
fig.update_layout(width=1200, height=1000)
return fig
########################################
def random_color():
return f"rgb({random.randint(0, 255)}, {random.randint(0, 255)}, {random.randint(0, 255)})"
def plot_condition_treemap_nct(df):
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
df = df.sort_values(by='Phase')
df = split_conditions(df, 'Condition')
conditions = df['Condition'].unique().tolist()
nct_ids = df['NCTId'].unique().tolist()
study_ids = df['OrgStudyId'].unique().tolist()
phases = df['Phase'].unique().tolist()
labels = conditions + nct_ids + study_ids + phases
colors = [random_color() for _ in range(len(labels))]
source = []
target = []
value = []
for i, condition in enumerate(conditions):
for j, nct_id in enumerate(nct_ids, start=len(conditions)):
count = df[(df['Condition'] == condition) & (df['NCTId'] == nct_id)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
for i, nct_id in enumerate(nct_ids, start=len(conditions)):
for j, study_id in enumerate(study_ids, start=len(conditions) + len(nct_ids)):
count = df[(df['NCTId'] == nct_id) & (df['OrgStudyId'] == study_id)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
for i, study_id in enumerate(study_ids, start=len(conditions) + len(nct_ids)):
for j, phase in enumerate(phases, start=len(conditions) + len(nct_ids) + len(study_ids)):
count = df[(df['OrgStudyId'] == study_id) & (df['Phase'] == phase)].shape[0]
if count > 0:
source.append(i)
target.append(j)
value.append(count)
num_conditions = len(conditions)
if num_conditions <= 2:
height = 400
elif num_conditions <= 10:
height = 800
elif num_conditions <= 30:
height = 1000
else:
height = 1200
height = min(height, 1000)
fig = go.Figure(data=[go.Sankey(
node=dict(
pad=15,
thickness=15,
line=dict(color="black", width=0.5),
label=labels,
color=colors
),
link=dict(
source=source,
target=target,
value=value
)
)])
fig.update_layout(title_text="Conditions, Trial IDs, Study IDs, Phases for Sponsor",
font_size=10, height=height, autosize=True)
return fig
#######################################
###########################################################################################################################
import re
def insert_line_break(text, max_length=30):
if len(text) <= max_length:
return text
nearest_space = text.rfind(' ', 0, max_length)
if nearest_space == -1:
nearest_space = max_length
return text[:nearest_space] + '<br>' + insert_line_break(text[nearest_space:].strip(), max_length)
########################################################### #######################################################################
########################################################### #######################################################################
def plot_nct2org_icicle(df):
icicle_df = pd.DataFrame(columns=['ids', 'labels', 'parents', 'hovertext'])
# Add the "Trials" root node
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': ["Trials"],
'labels': ["Trials"],
'parents': [""],
'hovertext': [""]
})], ignore_index=True)
# Create a dictionary of NCTId-BriefTitle pairs
nctid_brieftitle = df[['NCTId', 'BriefTitle']].drop_duplicates().set_index('NCTId').to_dict()['BriefTitle']
# Add the NCTId level with BriefTitle as hover text
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': df['NCTId'].unique(),
'labels': df['NCTId'].unique(),
'parents': ["Trials"] * len(df['NCTId'].unique()),
'hovertext': [nctid_brieftitle[nctid] for nctid in df['NCTId'].unique()]
})], ignore_index=True)
# Add the OrgStudyId level
for nctid in df['NCTId'].unique():
temp_df = df[df['NCTId'] == nctid]
orgstudyids = temp_df['OrgStudyId'].unique()
for orgstudyid in orgstudyids:
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{nctid}-{orgstudyid}"],
'labels': [orgstudyid],
'parents': [nctid],
'hovertext': [""]
})], ignore_index=True)
# Add the Condition level
for index, row in df.iterrows():
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{row['NCTId']}-{row['OrgStudyId']}-{row['Condition']}-{index}"],
'labels': [row['Condition']],
'parents': [f"{row['NCTId']}-{row['OrgStudyId']}"],
'hovertext': [""]
})], ignore_index=True)
fig = go.Figure(go.Icicle(
ids=icicle_df.ids,
labels=icicle_df.labels,
parents=icicle_df.parents,
hovertext=icicle_df.hovertext,
root_color="lightgrey",
textfont=dict(size=34, family="Arial")
))
fig.update_layout(width=1200, height=1000)
return fig
######################################################################################################################################
#################################################################################################################
############################## Scatter Plot for Country Timelines ######################################
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objs as go
from plotly.subplots import make_subplots
def split_condition(text):
split_text = text.split(',', 1)[0].split('|', 1)[0]
return split_text.strip()
#################################################################################################################################
import plotly.graph_objs as go
import plotly.graph_objs as go
import plotly.subplots as sp
import pandas as pd
import numpy as np
################################################################### COUNTRY PLOTS ################################################################
def plot_trial_country_map(df):
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
df = df.sort_values(by='Phase')
# Split the conditions
df = split_conditions(df, 'Condition')
## Root Country Node
icicle_df = pd.DataFrame(columns=['ids', 'labels', 'parents', 'hover_text'])
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': ["Country"],
'labels': ["Country"],
'parents': [""],
'hover_text': ["Country"]
})], ignore_index=True)
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': df['Country'].unique(),
'labels': df['Country'].unique(),
'parents': ["Country"] * len(df['Country'].unique()),
'hover_text': [f"({len(df[df['Country'] == country]['NCTId'].unique())} Trials)" for country in df['Country'].unique()]
})], ignore_index=True)
### Country and Conditions
for country in df['Country'].unique():
temp_df = df[df['Country'] == country]
conditions = temp_df['Condition'].unique()
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{country}__{condition}" for condition in conditions],
'labels': conditions,
'parents': [country] * len(conditions),
'hover_text': [f"({len(temp_df[temp_df['Condition'] == condition]['NCTId'].unique())} Trials)" for condition in conditions]
})], ignore_index=True)
### Country with Conditions and Trials NCTId and OrgStudId
for country_condition in icicle_df['ids'][icicle_df['parents'].isin(df['Country'].unique())]:
country, condition = country_condition.split('__')
temp_df = df[(df['Country'] == country) & (df['Condition'] == condition)]
trials = temp_df['NCTId'].unique()
trial_labels = [f"<br>{insert_line_break(temp_df[temp_df['NCTId'] == trial]['BriefTitle'].iloc[0])}" for trial in trials]
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{country_condition}__{trial}" for trial in trials],
'labels': trials,
'parents': [country_condition] * len(trials),
'hover_text': trial_labels
})], ignore_index=True)
fig = go.Figure(go.Icicle(
ids=icicle_df.ids,
labels=icicle_df.labels,
parents=icicle_df.parents,
textinfo='label',
hovertext=icicle_df.hover_text,
root_color="lightgrey",
textfont=dict(size=30, family="Arial")
))
fig.update_layout(
width = 1200,height = 800
)
return fig
####################
################################################################ SITES ####################################################
################################################################ TRIAL SITES ###########################################
def plot_trial_sites(df):
def insert_line_break(text, max_length=30):
if len(text) <= max_length:
return text
nearest_space = text.rfind(' ', 0, max_length)
if nearest_space == -1:
nearest_space = max_length
return text[:nearest_space] + '<br>' + insert_line_break(text[nearest_space:].strip(), max_length)
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
df = df.sort_values(by='Phase')
## Root Site Node
icicle_df = pd.DataFrame(columns=['ids', 'labels', 'parents', 'hover_text'])
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': ["Sites"],
'labels': ["Sites"],
'parents': [""],
'hover_text': ["Sites"]
})], ignore_index=True)
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': df['City'].unique(),
'labels': df['City'].unique(),
'parents': ["Sites"] * len(df['City'].unique()),
'hover_text': [f"({len(df[df['City'] == city]['NCTId'].unique())} Trials)" for city in df['City'].unique()]
})], ignore_index=True)
### City and Site
for city in df['City'].unique():
temp_df = df[df['City'] == city]
sites = temp_df['Site'].unique()
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{city}__{site}" for site in sites],
'labels': sites,
'parents': [city] * len(sites),
'hover_text': [f"({len(temp_df[temp_df['Site'] == site]['NCTId'].unique())} Trials)" for site in sites]
})], ignore_index=True)
### Site and Trials (NCTId, OrgStudyId, BriefTitle)
for city_site in icicle_df['ids'][icicle_df['parents'].isin(df['City'].unique())]:
city, site = city_site.split('__')
temp_df = df[(df['City'] == city) & (df['Site'] == site)]
trials = temp_df[['NCTId', 'OrgStudyId']].apply(lambda x: f"{x['NCTId']}<br>{x['OrgStudyId']}", axis=1).unique()
for trial in trials:
nctid = trial.split('<br>')[0]
icicle_df = pd.concat([icicle_df, pd.DataFrame({
'ids': [f"{city_site}__{nctid}"],
'labels': [trial],
'parents': [city_site],
'hover_text': [""]
})], ignore_index=True)
fig = go.Figure(go.Icicle(
ids=icicle_df.ids,
labels=icicle_df.labels,
parents=icicle_df.parents,
textinfo='label',
hovertext=icicle_df.hover_text,
root_color="lightgrey",
textfont=dict(size=30, family="Arial")
))
fig.update_layout(width=1200, height=800)
return fig
#############################################################################################################################################
def plot_trial_site_map(df):
def insert_line_break(text, max_length=30):
if len(text) <= max_length:
return text
nearest_space = text.rfind(' ', 0, max_length)
if nearest_space == -1:
nearest_space = max_length
return text[:nearest_space] + '<br>' + insert_line_break(text[nearest_space:].strip(), max_length)
df = df[df['StudyType'] == "Interventional"]
df['Phase'] = df['Phase'].fillna('UNKNOWN')
df = df.sort_values(by='Phase')
# Split the conditions
df = split_conditions(df, 'Condition')
#df_count = df.groupby([ 'Site', 'NCTId', 'BriefTitle','Condition']).size().reset_index(name='Count')
df_count = df.groupby([ 'Site', 'NCTId', 'BriefTitle','Condition']).size().reset_index(name='Count')
#df_count['BriefTitle'] = df_count['BriefTitle'].apply(insert_line_break)
# fig = px.treemap(df_count, path=['Site', 'NCTId', 'BriefTitle','Condition'], values='Count', color='Site')
fig = px.treemap(df_count, path=['Site', 'NCTId', 'Condition'], values='Count', color='Site')
# Customize font and textinfo for Sponsor, Country, Site, and Condition
fig.update_traces(
textfont=dict(family="Arial", size=30, color='black'),
selector=dict(depth=0) # Apply customization to Sponsor grid
)
fig.update_traces(
textfont=dict(family="Arial", size=30, color='black'),
selector=dict(depth=1) # Apply customization to Country grid
)
fig.update_traces(
textfont=dict(family="Arial", size=30, color='black'),
selector=dict(depth=2) # Apply customization to Site grid
)
fig.update_layout(width=1200, height=800)
return fig
############################################################
###############################################################################################################################################################
########################################################### Timelines ###########################################################################################################
import numpy as np
import plotly.graph_objs as go
import matplotlib.pyplot as plt
def generate_colors(n):
colors = plt.cm.rainbow(np.linspace(0, 1, n))
hex_colors = ['#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255)) for r, g, b, _ in colors]
return hex_colors
def get_marker_size(enrollment_count):
if enrollment_count < 100:
return 20
elif 100 <= enrollment_count < 300:
return 40
elif 300 <= enrollment_count < 500:
return 60
elif 500 <= enrollment_count < 1000:
return 70
else:
return 100
def plot_trial_bubblemap(df):
scatter_plot_start_traces = []
scatter_plot_end_traces = []
scatter_plot_lines = []
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Fill missing values in the 'Phase' column with a placeholder string
df['Phase'] = df['Phase'].fillna('UNKNOWN')
# Sort by Phase
df = df.sort_values(by='Phase')
## address correct date formats
#df['StartDate'] = pd.to_datetime(df['StartDate'])
df['StartDate'] = pd.to_datetime(df['StartDate'], errors='coerce')
#df['CompletionDate'] = pd.to_datetime(df['CompletionDate'])
df['CompletionDate'] = pd.to_datetime(df['CompletionDate'], errors='coerce')
# Split the conditions
df = split_conditions(df, 'Condition')
# Assign an ID to each unique condition
#condition_ids = {condition: idx for idx, condition in enumerate(df['Condition'].unique())}
# Create a dictionary of unique conditions with their IDs starting from 1
condition_ids = {condition: i for i, condition in enumerate(df['Condition'].unique(), start=1)}
# Create a dictionary that maps each NCTId to a list of condition IDs
nctid_condition_map = df.groupby('NCTId')['Condition'].apply(lambda x: [condition_ids[cond] for cond in x]).to_dict()
# Define the marker size function
df['MarkerSize'] = df['EnrollmentCount'].apply(get_marker_size)
# Update the hovertemplate to display original Conditions associated with the NCTId
#hovertemplate_start = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>OrgStudyId: %{customdata[1]}<br>Phase: %{customdata[2]}<br>Start Date: %{x}<br>Enrollment Count: %{customdata[3]}<extra></extra>'
#hovertemplate_end = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>OrgStudyId: %{customdata[1]}<br>NCTId: %{customdata[2]}<br>Phase: %{customdata[3]}<br>Completion Date: %{x}<br>Enrollment Count: %{customdata[4]}<extra></extra>'
# Update the hovertemplate to display original Conditions associated with the NCTId
hovertemplate_start = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>BriefTitle: %{customdata[1]}<br>OrgStudyId: %{customdata[2]}<br>Phase: %{customdata[3]}\
<br>Start Date: %{x}<br>Enrollment Count: %{customdata[4]}<extra></extra>'
#hovertemplate_end = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>BriefTitle: %{customdata[1]}<br>OrgStudyId: %{customdata[2]}<br>NCTId: %{customdata[3]}\
#<br>Phase: %{customdata[4]}<br>Completion Date: %{x}<br>Enrollment Count: %{customdata[5]}<extra></extra>'
hovertemplate_end = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>BriefTitle: %{customdata[1]}<br>OrgStudyId: %{customdata[2]}\
<br>Phase: %{customdata[3]}<br>Completion Date: %{x}<br>Enrollment Count: %{customdata[4]}<extra></extra>'
for nctid in df['NCTId'].unique():
df_filtered = df[df['NCTId'] == nctid]
# Replace the text parameter with original Conditions
text = [', '.join(df_filtered['Condition'].unique()) for _ in range(len(df_filtered))]
# Get the first condition ID for the current NCTId
first_condition_id = nctid_condition_map[nctid][0]
color = f'rgb({first_condition_id * 10 % 256}, {(first_condition_id * 20) % 256}, {(first_condition_id * 30) % 256})'
# color = ['rgb(255, 0, 0)', 'rgb(0, 255, 0)', 'rgb(0, 0, 255)'][first_condition_id % 3]
# Start traces (square)
start_trace = go.Scatter(x=df_filtered['StartDate'],
y=df_filtered['NCTId'],
mode='markers',
marker=dict(size=10, symbol='square', color=color),
text=text,
#customdata=df_filtered[['StudyType', 'OrgStudyId', 'Phase', 'EnrollmentCount']],
customdata=df_filtered[['Condition', 'BriefTitle','OrgStudyId', 'Phase', 'EnrollmentCount']],
hovertemplate=hovertemplate_start,
showlegend=False)
scatter_plot_start_traces.append(start_trace)
# End traces (circle)
end_trace = go.Scatter(x=df_filtered['CompletionDate'],
y=df_filtered['NCTId'],
mode='markers',
marker=dict(size=df_filtered['MarkerSize'], symbol='circle', color=color, sizemode='diameter'),
text=text,
#customdata=df_filtered[['StudyType', 'OrgStudyId', 'NCTId', 'Phase', 'EnrollmentCount']],
customdata=df_filtered[['Condition', 'BriefTitle','OrgStudyId', 'Phase', 'EnrollmentCount']],
hovertemplate=hovertemplate_end,
showlegend=False)
scatter_plot_end_traces.append(end_trace)
# Line traces connecting start and end dates
line_trace = go.Scatter(x=[df_filtered['StartDate'].iloc[0], df_filtered['CompletionDate'].iloc[0]],
y=[nctid, nctid],
mode='lines',
line=dict(color='black', width=1),
showlegend=False)
scatter_plot_lines.append(line_trace)
# Create legend traces for unique conditions with their IDs
legend_traces = [go.Scatter(x=[None], y=[None],
mode='markers',
marker=dict(size=10, symbol='circle', color=f'rgb({condition_id * 10 % 256}, {(condition_id * 20) % 256}, {(condition_id * 30) % 256})'),
name=f'{condition_id}: {condition}',
showlegend=True) for condition, condition_id in condition_ids.items()]
# Combine all traces
data = scatter_plot_start_traces + scatter_plot_end_traces + scatter_plot_lines + legend_traces
# Update the layout
layout = go.Layout(yaxis=dict(title='NCTId',
showgrid=False,
tickvals=df['NCTId'].unique(),
ticktext=df['NCTId'].unique(),
tickangle=0),
xaxis=dict(title='Start-End Dates',
showgrid=False,
range=[pd.to_datetime('2020-01-01'), pd.to_datetime('2028-12-31')],
tickvals=[pd.to_datetime(f'{year}-01-01') for year in range(2020, 2029)]),
# tickvals=[pd.to_datetime(f'{year}') for year in range(2020, 2029)],
showlegend=True,
legend=dict(title='Conditions', x=1.05, y=1, traceorder='normal', bgcolor='rgba(255,255,255,0.5)', font=dict(color='#000000')),
margin=dict(l=150),
plot_bgcolor='#ffffff',
paper_bgcolor='#ffffff',
font=dict(family='Segoe UI', color='#000000'))
fig = go.Figure(data=data, layout=layout)
# Calculate the height based on the number of shortened_conditions
num_trial = len(df['NCTId'].unique())
if num_trial <= 5:
height = 600
elif num_trial >= 10:
height = 800
elif num_trial >= 20:
height = 1000
else:
height = 1400 # Linearly scale between 700 and 1000, assuming a max of 100 conditions
height = min(height, 1400) # Cap the height at 1400
# Set the width and height
fig.update_layout(
title='Trial Start and End Dates by Conditions',
width=1200, # adjust as per requirement
height=height # adjust as per requirement
)
return fig
########################################################################################################################################################
def plot_trial_bubblemap_comp(df):
scatter_plot_start_traces = []
scatter_plot_end_traces = []
scatter_plot_lines = []
# Filter the dataframe for 'StudyType' equal to "Interventional"
df = df[df['StudyType'] == "Interventional"]
# Fill missing values in the 'Phase' column with a placeholder string
df['Phase'] = df['Phase'].fillna('UNKNOWN')
# Sort by Phase
df = df.sort_values(by='Phase')
## address correct date formats
#df['StartDate'] = pd.to_datetime(df['StartDate'])
df['StartDate'] = pd.to_datetime(df['StartDate'], errors='coerce')
# df['CompletionDate'] = pd.to_datetime(df['CompletionDate'])
df['CompletionDate'] = pd.to_datetime(df['CompletionDate'], errors='coerce')
# Split the conditions
df = split_conditions(df, 'Condition')
# Assign an ID to each unique condition
#condition_ids = {condition: idx for idx, condition in enumerate(df['Condition'].unique())}
# Create a dictionary of unique conditions with their IDs starting from 1
condition_ids = {condition: i for i, condition in enumerate(df['Condition'].unique(), start=1)}
# Create a dictionary that maps each NCTId to a list of condition IDs
nctid_condition_map = df.groupby('NCTId')['Condition'].apply(lambda x: [condition_ids[cond] for cond in x]).to_dict()
# Define the marker size function
df['MarkerSize'] = df['EnrollmentCount'].apply(get_marker_size)
# Update the hovertemplate to display original Conditions associated with the NCTId
hovertemplate_start = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>BriefTitle: %{customdata[1]}<br>OrgStudyId: %{customdata[2]}<br>Phase: %{customdata[3]}\
<br>Start Date: %{x}<br>Enrollment Count: %{customdata[4]}<extra></extra>'
hovertemplate_end = 'NCTId: %{y}<br>Conditions: %{text}<br>Type: %{customdata[0]}<br>BriefTitle: %{customdata[1]}<br>OrgStudyId: %{customdata[2]}\
<br>Phase: %{customdata[3]}<br>Completion Date: %{x}<br>Enrollment Count: %{customdata[4]}<extra></extra>'
for nctid in df['NCTId'].unique():
df_filtered = df[df['NCTId'] == nctid]
# Replace the text parameter with original Conditions
text = [', '.join(df_filtered['Condition'].unique()) for _ in range(len(df_filtered))]
# Get the first condition ID for the current NCTId
first_condition_id = nctid_condition_map[nctid][0]
color = f'rgb({first_condition_id * 10 % 256}, {(first_condition_id * 20) % 256}, {(first_condition_id * 30) % 256})'
# color = ['rgb(255, 0, 0)', 'rgb(0, 255, 0)', 'rgb(0, 0, 255)'][first_condition_id % 3]
# Start traces (square)
start_trace = go.Scatter(x=df_filtered['StartDate'],
y=df_filtered['NCTId'],
mode='markers',
marker=dict(size=10, symbol='square', color=color),
text=text,
#customdata=df_filtered[['StudyType', 'OrgStudyId', 'Phase', 'EnrollmentCount']],
customdata=df_filtered[['Condition', 'BriefTitle','OrgStudyId', 'Phase', 'EnrollmentCount']],
hovertemplate=hovertemplate_start,
showlegend=False)
scatter_plot_start_traces.append(start_trace)
# End traces (circle)
end_trace = go.Scatter(x=df_filtered['CompletionDate'],
y=df_filtered['NCTId'],
mode='markers',
marker=dict(size=df_filtered['MarkerSize'], symbol='circle', color=color, sizemode='diameter'),
text=text,
#customdata=df_filtered[['StudyType', 'OrgStudyId', 'NCTId', 'Phase', 'EnrollmentCount']],
customdata=df_filtered[['Condition', 'BriefTitle','OrgStudyId', 'Phase', 'EnrollmentCount']],
hovertemplate=hovertemplate_end,
showlegend=False)
scatter_plot_end_traces.append(end_trace)
# Line traces connecting start and end dates
line_trace = go.Scatter(x=[df_filtered['StartDate'].iloc[0], df_filtered['CompletionDate'].iloc[0]],
y=[nctid, nctid],
mode='lines',
line=dict(color='black', width=1),
showlegend=False)
scatter_plot_lines.append(line_trace)
# Create legend traces for unique conditions with their IDs
legend_traces = [go.Scatter(x=[None], y=[None],
mode='markers',
marker=dict(size=10, symbol='circle', color=f'rgb({condition_id * 10 % 256}, {(condition_id * 20) % 256}, {(condition_id * 30) % 256})'),
name=f'{condition_id}: {condition}',
showlegend=True) for condition, condition_id in condition_ids.items()]
# Combine all traces
data = scatter_plot_start_traces + scatter_plot_end_traces + scatter_plot_lines + legend_traces
# Update the layout
layout = go.Layout(yaxis=dict(title='NCTId',
showgrid=False,
tickvals=df['NCTId'].unique(),
ticktext=df['NCTId'].unique(),
tickangle=0),
xaxis=dict(title='Start-End Dates',
showgrid=False,
range=[pd.to_datetime('2010-01-01'), pd.to_datetime('2023-12-31')],
tickvals=[pd.to_datetime(f'{year}-01-01') for year in range(2010, 2023)]),
# tickvals=[pd.to_datetime(f'{year}') for year in range(2020, 2029)],
showlegend=True,
legend=dict(title='Conditions', x=1.05, y=1, traceorder='normal', bgcolor='rgba(255,255,255,0.5)', font=dict(color='#000000')),
margin=dict(l=150),
plot_bgcolor='#ffffff',
paper_bgcolor='#ffffff',
font=dict(family='Segoe UI', color='#000000'))
fig = go.Figure(data=data, layout=layout)
# Calculate the height based on the number of shortened_conditions
num_trial = len(df['NCTId'].unique())
if num_trial <= 5:
height = 600
elif num_trial >= 10:
height = 800
elif num_trial >= 20:
height = 1000
else:
height = 1400 # Linearly scale between 700 and 1000, assuming a max of 100 conditions
height = min(height, 1400) # Cap the height at 1400
# Set the width and height
fig.update_layout(
title='Trial Start and End Dates by Conditions',
width=1200, # adjust as per requirement
height=height # adjust as per requirement
)
return fig
#######################################################################################
#######################################################################################
############################################ Trial Site Map without Zip code now ##############
import geopandas as gpd
def plot_trial_site_world_map(df, country_filter=None):
df.loc[(df['City'] == 'Multiple Locations') & (df['Country'] == 'Germany'), 'City'] = 'Berlin'
unique_cities = df[['City', 'Country']].drop_duplicates().copy()
geocode_cache = {} # Create an empty dictionary to store geocoded results
def geocode_with_cache(city, country):
key = (city, country)
if key not in geocode_cache:
geocode_cache[key] = gpd.tools.geocode(f"{city}, {country}").geometry[0]
return geocode_cache[key]
unique_cities['Coordinates'] = unique_cities.apply(lambda row: geocode_with_cache(row['City'], row['Country']), axis=1)
unique_cities[['Latitude', 'Longitude']] = unique_cities['Coordinates'].apply(lambda coord: pd.Series({'Latitude': coord.y, 'Longitude': coord.x}))
df = df.merge(unique_cities, on=['City', 'Country'])
# Create a new column combining 'Site' and 'Country'
df['SiteCountry'] = df['Site'] + ', ' + df['Country']
df_count = df.groupby(['Country', 'City', 'SiteCountry', 'Condition', 'NCTId','BriefTitle', 'Latitude', 'Longitude']).size().reset_index(name='Count')
if country_filter:
df_count = df_count[df_count['Country'] == country_filter]
fig = px.scatter_geo(df_count,
lat='Latitude',
lon='Longitude',
hover_name='SiteCountry',
hover_data={'Latitude':False, 'Longitude':False, 'NCTId':False,'BriefTitle':False, 'Condition':False, 'City':True, 'Country':True},
size='Count',
color='SiteCountry',
projection='mercator')
fig.update_layout(title='Trial Sites Map',
geo=dict(showframe=False, showcoastlines=False, showcountries=True),
width=1200,
height=800)
return fig
def plot_trial_site_world_map_old(df, country_filter=None):
df.loc[(df['City'] == 'Multiple Locations') & (df['Country'] == 'Germany'), 'City'] = 'Berlin'
unique_cities = df[['City', 'Country']].drop_duplicates()
geocode_cache = {} # Create an empty dictionary to store geocoded results
def geocode_with_cache(city, country):
key = (city, country)
if key not in geocode_cache:
geocode_cache[key] = gpd.tools.geocode(f"{city}, {country}").geometry[0]
return geocode_cache[key]
unique_cities['Coordinates'] = unique_cities.apply(lambda row: geocode_with_cache(row['City'], row['Country']), axis=1)
unique_cities[['Latitude', 'Longitude']] = unique_cities['Coordinates'].apply(lambda coord: pd.Series({'Latitude': coord.y, 'Longitude': coord.x}))
df = df.merge(unique_cities, on=['City', 'Country'])
df_count = df.groupby(['Country', 'City', 'Site', 'Condition', 'NCTId','BriefTitle', 'Latitude', 'Longitude']).size().reset_index(name='Count')
if country_filter:
df_count = df_count[df_count['Country'] == country_filter]
fig = px.scatter_geo(df_count,
lat='Latitude',
lon='Longitude',
hover_name='Site',
hover_data={'Latitude':False, 'Longitude':False, 'NCTId':False,'BriefTitle':False, 'Condition':False, 'City':True, 'Country':True},
size='Count',
color='Site',
projection='mercator')
fig.update_layout(title='Trial Sites Map',
geo=dict(showframe=False, showcoastlines=False, showcountries=True),
width=1200,
height=800)
return fig
def plot_trial_site_world_map_old(df, country_filter=None):
# Get the unique cities and countries from the DataFrame
# Update the City to the country's capital if City is 'Multiple Locations' and Country is 'Germany'
df.loc[(df['City'] == 'Multiple Locations') & (df['Country'] == 'Germany'), 'City'] = 'Berlin'
unique_cities = df[['City', 'Country']].drop_duplicates()
# Get the approximate coordinates of the cities using geopandas
unique_cities['Coordinates'] = unique_cities.apply(lambda row: gpd.tools.geocode(f"{row['City']}, {row['Country']}").geometry[0], axis=1)
unique_cities[['Latitude', 'Longitude']] = unique_cities['Coordinates'].apply(lambda coord: pd.Series({'Latitude': coord.y, 'Longitude': coord.x}))
# Merge the coordinates back to the original DataFrame
df = df.merge(unique_cities, on=['City', 'Country'])
# Create a new DataFrame with the count of distinct NCTId for each combination of Sponsor, Country, City, Site, and Condition
df_count = df.groupby([ 'Country', 'City', 'Site', 'Condition', 'NCTId','BriefTitle', 'Latitude', 'Longitude']).size().reset_index(name='Count')
# If a country filter is applied, filter the DataFrame
if country_filter:
df_count = df_count[df_count['Country'] == country_filter]
#print(df_count)
# Create the map
fig = px.scatter_geo(df_count,
lat='Latitude',
lon='Longitude',
hover_name='Site',
hover_data={'Latitude':False, 'Longitude':False, 'NCTId':False,'BriefTitle':False, 'Condition':False, 'City':True, 'Country':True},
size='Count',
color='Site', # Assign a unique color to each country
projection='mercator')
# Remove the legend while keeping the color coding
fig.update_traces(showlegend=True)
# Customize the map
fig.update_layout(title='Trial Sites Map',
geo=dict(showframe=False, showcoastlines=False, showcountries=True),
width=1200, # Set the width of the map
height=800
#, # Set the height of the map
#margin=dict(l=0, r=0, t=50, b=0)) # Adjust the margins to fit the legend
)
return fig
################################################################################
def plot_trial_site_world_map_without_api(df):
# Get the unique cities and countries from the DataFrame
unique_cities = df[['City', 'Country']].drop_duplicates()
# Get the approximate coordinates of the cities using geopandas
unique_cities['Coordinates'] = unique_cities.apply(lambda row: gpd.tools.geocode(f"{row['City']}, {row['Country']}").geometry[0], axis=1)
unique_cities[['Latitude', 'Longitude']] = unique_cities['Coordinates'].apply(lambda coord: pd.Series({'Latitude': coord.y, 'Longitude': coord.x}))
# Merge the coordinates back to the original DataFrame
df = df.merge(unique_cities, on=['City', 'Country'])
# Create a new DataFrame with the count of distinct NCTId for each combination of Sponsor, Country, City, Site, and Condition
df_count = df.groupby(['Sponsor', 'Country', 'City', 'Site', 'Condition', 'NCTId', 'Latitude', 'Longitude']).size().reset_index(name='Count')
# Create the map
fig = px.scatter_geo(df_count,
lat='Latitude',
lon='Longitude',
color='Site',
hover_name='Site',
hover_data={'Latitude':False, 'Longitude':False, 'Sponsor':True, 'Condition':True, 'City':True, 'Country':True},
# hover_data=['Sponsor', 'Condition'],
size='Count',
projection='mercator')
# Customize the map
fig.update_layout(title='Trial Sites Map',
geo=dict(showframe=False, showcoastlines=False, showcountries=True))
return fig
#############################################################################################################
############################################################# Gradio Function as Views ####################################
### ######################### Find Sponspors
#############################################################################################################################################
def select_sponsor(sponsor_input, academia_input):
if sponsor_input:
return sponsor_input
else:
return academia_input
def select_disease(disease_input, disease_input_text):
if disease_input_text.strip():
return disease_input_text.strip()
else:
return disease_input
#summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drug
async def disease_view (condition, condition_text, sponsor_input, academia_input):
# condition = condition.strip() # Remove leading and trailing spaces
sponsor = select_sponsor(sponsor_input, academia_input)
condition = select_disease(condition, condition_text)
status = "Recruiting"
#print("In Gradio")
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status )
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status )
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status )
#### error traps
if not html_table_conditions and html_table_conditions_collb is None:
return "No data was matched from Clinical Trials.Gov, Please try with new selection again!", None, None, None, None, None, None, None
# Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_conditions)[0]
#df2 = pd.read_html(html_table_conditions_collb)[0]
df2 = []
try:
df2 = pd.read_html(html_table_conditions_collb)[0]
except (ValueError, IndexError):
df2 = pd.DataFrame()
####### Address Runtime API Issue to not connecting or fetching from Clinical Trials.gov
# Display the DataFrame
# evaluate if need to change to collaborator other than top 20 ????
condition_other = plot_condition_others(df)
#### Sponsor Only
condition_sunburst = plot_condition_sunburst(df)
################################################################################
sponsor_tree = plot_sponsor_tree(df)
collaborator_tree = None # Initialize to None or any other default value
# if df2.empty:
# Call the function with the combined dataframe
# tree_map_fig = plot_sponsor_collaborator_tree_map(df)
if not df2.empty:
# Plot the data
#collaborator_tree = plot_sponsor_tree(df2)
collaborator_tree = plot_collaborator_icicle(df2)
#plot_sponsor_collaborator_tree_map
# print("All Plot done for Gradio")
# return summary_stats,summary_stats_collb, html_table_conditions,html_table_conditions_collb, condition_other, condition_sunburst ,sponsor_tree, collaborator_tree
return summary_stats,summary_stats_collb, html_table_conditions,html_table_conditions_collb, condition_other, condition_sunburst ,sponsor_tree, collaborator_tree
##################### Assets ###################################################################################
def select_sponsor(s_sponsor_input, s_academia_input):
if s_sponsor_input:
return s_sponsor_input
else:
return s_academia_input
def select_condition(s_disease_input, s_disease_input_type):
if s_disease_input_type.strip():
return s_disease_input_type.strip()
else:
return s_disease_input
async def drug_view(condition, condition_type, s_sponsor_input, s_academia_input):
sponsor = select_sponsor(s_sponsor_input, s_academia_input)
condition = select_condition(condition, condition_type)
status = "Recruiting"
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status)
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status)
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status)
#### error traps
if html_table_drugs is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
###### Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_drugs)[0]
####### Address Runtime API Issue to not connecting or fetching from Clinical Trials.gov
# Display the DataFrame
sankey_map_drug = plot_drug_sankey(df)
return summary_stats,html_table_drugs, sankey_map_drug
########################### Condition###################
################## ########################################################################################
def select_sponsor_phc(s_sponsor_input_phc, s_academia_input_phc):
if s_sponsor_input_phc:
return s_sponsor_input_phc
else:
return s_academia_input_phc
def select_condition_phc(s_disease_input_phc, s_disease_input_type_phc):
if s_disease_input_type_phc.strip():
return s_disease_input_type_phc.strip()
else:
return s_disease_input_phc
async def disease_view_phc(condition, condition_type, s_sponsor_input, s_academia_input):
sponsor = select_sponsor_phc(s_sponsor_input, s_academia_input )
condition = select_condition_phc(condition, condition_type)
status = "Recruiting"
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status)
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status)
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status)
#### error traps
if html_table_conditions is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
# Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_conditions)[0]
####### Address Runtime API Issue to not connecting or fteching from Clinical Trials.gov
tree_map_cond_nct = plot_condition_treemap_nct(df)
return summary_stats, html_table_conditions, tree_map_cond_nct
# return summary_stats, html_table_conditions, tree_map_cond_nct, nct_org_map
################## Trial ########################################################################################
def select_sponsor_phs(s_sponsor_input_phs, s_academia_input_phs):
if s_sponsor_input_phs:
return s_sponsor_input_phs
else:
return s_academia_input_phs
def select_condition_phs(s_disease_input_phs, s_disease_input_type_phs):
if s_disease_input_type_phs.strip():
return s_disease_input_type_phs.strip()
else:
return s_disease_input_phs
async def disease_view_phs(condition, condition_type, s_sponsor_input, s_academia_input):
sponsor = select_sponsor_phs(s_sponsor_input, s_academia_input )
condition = select_condition_phs(condition, condition_type)
status = "Recruiting"
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status)
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status)
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status)
#### error traps
if html_table_conditions is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
# Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_conditions)[0]
####### Address Runtime API Issue to not connecting or fteching from Clinical Trials.gov
#tree_map_cond_nct = plot_condition_treemap_nct(df)
nct_org_map = plot_nct2org_icicle(df)
return summary_stats, html_table_conditions, nct_org_map
# return summary_stats, html_table_conditions, tree_map_cond_nct, nct_org_map
##################################################### New Trials ######################################
def select_sponsor_phs_n(s_sponsor_input_phs, s_academia_input_phs):
if s_sponsor_input_phs:
return s_sponsor_input_phs
else:
return s_academia_input_phs
def select_condition_phs_n(s_disease_input_phs, s_disease_input_type_phs):
if s_disease_input_type_phs.strip():
return s_disease_input_type_phs.strip()
else:
return s_disease_input_phs
####################################################################################
async def disease_view_phs_n(condition, condition_type, s_sponsor_input, s_academia_input):
sponsor = select_sponsor_phs_n(s_sponsor_input, s_academia_input )
condition = select_condition_phs_n(condition, condition_type)
status = "Not yet recruiting"
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status)
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status)
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status)
#### error traps
if html_table_conditions is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
# Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_conditions)[0]
####### Address Runtime API Issue to not connecting or fteching from Clinical Trials.gov
tree_map_cond_nct = plot_condition_treemap_nct(df)
# nct_org_map = plot_nct2org_icicle(df)
######################################### error traps
# if html_table_add is None:
# return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df2 = pd.read_html(html_table_conditions)[0]
bubble_map_trials = plot_trial_bubblemap(df2)
# return summary_stats, html_table_conditions, tree_map_cond_nct, nct_org_map,bubble_map_trials
return summary_stats, html_table_conditions, tree_map_cond_nct, bubble_map_trials
############################################### Completed Trials ####################################################
def select_sponsor_phs_c(s_sponsor_input_phs, s_academia_input_phs):
if s_sponsor_input_phs:
return s_sponsor_input_phs
else:
return s_academia_input_phs
def select_condition_phs_c(s_disease_input_phs, s_disease_input_type_phs):
if s_disease_input_type_phs.strip():
return s_disease_input_type_phs.strip()
else:
return s_disease_input_phs
async def disease_view_phs_c(condition, condition_type, s_sponsor_input, s_academia_input):
sponsor = select_sponsor_phs_c(s_sponsor_input, s_academia_input )
condition = select_condition_phs_c(condition, condition_type)
status = "Completed"
# Call gradio_wrapper_nct with appropriate arguments
if condition and sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, sponsor=sponsor, status = status)
elif sponsor:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(sponsor=sponsor, status = status)
elif condition:
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(condition=condition, status = status)
#### error traps
if html_table_conditions is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
# Convert the HTML table to a pandas DataFrame
df = pd.read_html(html_table_conditions)[0]
####### Address Runtime API Issue to not connecting or fteching from Clinical Trials.gov
tree_map_cond_nct = plot_condition_treemap_nct(df)
nct_org_map = plot_nct2org_icicle(df)
######################################### error traps
# if html_table_add is None:
# return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df3 = pd.read_html(html_table_conditions)[0]
bubble_map_trials = plot_trial_bubblemap_comp(df3)
###### Convert the HTML table to a pandas DataFrame
df2 = pd.read_html(html_table_drugs)[0]
####### Address Runtime API Issue to not connecting or fteching from Clinical Trials.gov
# Display the DataFrame
sankey_map_drug = plot_drug_sankey(df2)
#return summary_stats, html_table_conditions, tree_map_cond_nct, nct_org_map,bubble_map_trials
return summary_stats, html_table_conditions, tree_map_cond_nct, nct_org_map,sankey_map_drug,bubble_map_trials
### ############### Country #########################################################
def select_sponsor_con(sponsor_input_con, academia_input_con):
if sponsor_input_con:
return sponsor_input_con
else:
return academia_input_con
def select_condition_con(condition_input, condition_input_type):
if condition_input_type.strip():
return condition_input_type.strip()
else:
return condition_input
async def condition_view(condition, country, condition_type, sponsor_input_con, academia_input_con):
condition = select_condition_con(condition, condition_type)
sponsor = select_sponsor_con(sponsor_input_con, academia_input_con)
status = "Recruiting"
summary_stats, html_table_conditions, html_table, summary_stats_sites, html_table_add,html_table_drugs = await gradio_wrapper_nct_spn(condition=condition, sponsor=sponsor, country=country, status = status)
# Convert the HTML table to a pandas DataFrame
# Check if html_table_add is None before converting to DataFrame
#### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df = pd.read_html(html_table_add)[0]
df2 = pd.read_html(html_table_add)[0]
#print(df)
trial_country = plot_trial_country_map(df2)
return summary_stats_sites, html_table_add,trial_country
############### Site #########################################################################################################
def select_sponsor_con_s(sponsor_input_con_s, academia_input_con_s):
if sponsor_input_con_s:
return sponsor_input_con_s
else:
return academia_input_con_s
def select_condition_con(condition_input, condition_input_type):
if condition_input_type.strip():
return condition_input_type.strip()
else:
return condition_input
async def condition_view_s(condition, country, condition_type, sponsor_input_con_s, academia_input_con_s):
condition = select_condition_con(condition, condition_type)
sponsor = select_sponsor_con_s(sponsor_input_con_s, academia_input_con_s)
status = "Recruiting"
summary_stats, html_table_conditions, html_table, summary_stats_sites, html_table_add,html_table_drugs = await gradio_wrapper_nct_spn(condition=condition, sponsor=sponsor, country=country, status = status)
#### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None,None
#### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
#### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None, None
# print(html_table_add)
df = pd.read_html(html_table_add)[0]
#print(df)
country_site = plot_trial_site_map(df)
site_cond = plot_trial_sites(df)
return summary_stats_sites, html_table_add, site_cond,country_site
###################################### Timelines ###################################################################
def select_sponsor_cont(sponsor_input_con, academia_input_con):
if sponsor_input_con:
return sponsor_input_con
else:
return academia_input_con
def select_condition_cont(condition_input, condition_input_type):
if condition_input_type.strip():
return condition_input_type.strip()
else:
return condition_input
async def condition_viewt(condition, country, condition_type, sponsor_input_con, academia_input_con):
condition = select_condition_cont(condition, condition_type)
sponsor = select_sponsor_cont(sponsor_input_con, academia_input_con)
status = "Recruiting"
summary_stats, html_table_conditions, html_table, summary_stats_sites, html_table_add,html_table_drugs = await gradio_wrapper_nct_spn(condition=condition, sponsor=sponsor, country=country, status = status)
# Convert the HTML table to a pandas DataFrame
######################################### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df = pd.read_html(html_table_add)[0]
bubble_map_trials = plot_trial_bubblemap(df)
return summary_stats_sites, html_table,bubble_map_trials
############### Find Site Map #########################################################################################################
def select_sponsor_con_map(sponsor_input_con_map, academia_input_con_map):
if sponsor_input_con_map:
return sponsor_input_con_map
else:
return academia_input_con_map
async def condition_view_map(condition, country, sponsor_input_con_map, academia_input_con_map):
#condition = condition.strip() # Remove leading and trailing spaces
sponsor = select_sponsor_con_map(sponsor_input_con_map, academia_input_con_map)
status = "Recruiting"
summary_stats, html_table_conditions, html_table, summary_stats_sites, html_table_add,html_table_drugs = await gradio_wrapper_nct_spn(condition=condition, sponsor=sponsor, country=country, status = status )
# print(html_table_add)
#### error traps
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df = pd.read_html(html_table_add)[0]
world_map = plot_trial_site_world_map(df)
if world_map is None:
return "Sorry, the plot could not be generated. Please try again by slecting a country!", None, None
return summary_stats_sites, html_table_add, world_map
### ########################################Find Trial Eligibility###########################################################################
############################################################################ END VIEWS########################
#### To remove the inclusion exclusion numbers duplicating in text
import re
def format_html_list(html_string):
# Split the input string by numbers followed by a period and a space
items = re.split(r'(\d+\.\s)', html_string)
# Combine the split items into a list of strings, keeping the original numbers
formatted_items = [number + text for number, text in zip(items[1::2], items[2::2])]
# Remove unwanted characters from each item
formatted_items = [re.sub(r':\.', '', item) for item in formatted_items]
formatted_items = [re.sub(r'General\.', '', item) for item in formatted_items]
# Filter out empty list items
formatted_items = [item for item in formatted_items if item.strip()]
# Check if the first item is empty and remove it if so
if formatted_items[0].split('. ', 1)[1].strip() == '':
formatted_items = formatted_items[1:]
# Renumber the items
# formatted_items = [f"{i+1}. {item.split('. ', 1)[1]}" for i, item in enumerate(formatted_items)]
# Renumber the items
formatted_items = [
f"{i+1}. {item.split('. ', 1)[1]}" if len(item.split('. ', 1)) > 1 else item
for i, item in enumerate(formatted_items)
]
# Remove extra periods
formatted_items = [re.sub(r'\.{2,}', '.', item) for item in formatted_items]
# Join the list items with line breaks to create an HTML string
formatted_html = "<br>".join(formatted_items)
return formatted_html
########################################################################################
def format_html_list_old(html_string):
# Split the input string by numbers followed by a period and a space
items = re.split(r'(\d+\.\s)', html_string)
# Combine the split items into a list of strings, removing the original numbers
formatted_items = [number + text for number, text in zip(items[1::2], items[2::2])]
# Remove unwanted characters from each item
formatted_items = [re.sub(r':\.', '', item) for item in formatted_items]
formatted_items = [re.sub(r'General\.', '', item) for item in formatted_items]
# Filter out empty list items
formatted_items = [item for item in formatted_items if item.strip()]
# Join the list items with line breaks to create an HTML string
formatted_html = "<br>".join(formatted_items)
return formatted_html
# Function to convert a list of formatted criteria to a dictionary
# ############################# Hugging Face Model Invoke ####################################
import os
import io
from IPython.display import Image, display, HTML
from PIL import Image
import base64
import gradio as gr
import requests, json
################################################################ NLP Model #######################################
# API Token and Model Name
API_TOKEN = "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"
MODEL_NAME = "d4data/biomedical-ner-all"
#MODEL_NAME = "kormilitzin/en_core_spancat_med7_lg"
############################################################################################################################
def merge_tokens(tokens):
if not tokens:
return []
merged_tokens = []
for token in tokens:
if (merged_tokens and
token['entity_group'] == merged_tokens[-1]['entity_group']):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
# Function to call Hugging Face API################################################################################
def get_completion(text):
headers = {"Authorization": f"Bearer {API_TOKEN}"}
data = {"inputs": text, "max_tokens": 2048} # Set the max_tokens parameter
#data = {"inputs": text, "max_tokens": 512} # Set the max_tokens parameter
data = {"inputs": text} # Set the max_tokens parameter
response = requests.post(f"https://api-inference.huggingface.co/models/{MODEL_NAME}", headers=headers, json=data, timeout= 90)
# Print the response content
print(f"From Hugging Face API: {response.text}")
return response.json()
# Split texts when longer than 2048 tokens
from transformers import AutoTokenizer
# Load the tokenizer for the model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
#####################################################################################
# Function to split the input text into chunks
def split_input_text(text, max_tokens):
tokens = tokenizer.encode(text)
token_chunks = []
for i in range(0, len(tokens), max_tokens):
token_chunk = tokens[i:i + max_tokens]
token_chunks.append(tokenizer.decode(token_chunk))
# Debug: Print the token length of the current chunk
print(f"Token length of chunk {len(token_chunks)}: {len(token_chunk)}")
return token_chunks
# Function to remove HTML tags from the input text
def remove_html_tags(text):
clean_text = re.sub('<[^>]*>', ' ', text)
return clean_text
def ner_oll (input):
max_retries = 10
retries = 0
output = None
# Remove HTML tags from the input text
input_no_html = remove_html_tags(input)
# Split the input text into chunks
input_chunks = split_input_text(input_no_html, 500)
# Initialize an empty list to store the merged tokens from all chunks
all_merged_tokens = []
# Debug: Print the number of chunks created
print(f"Number of input chunks: {len(input_chunks)}")
api_calls = 0 # Counter for API calls
for input_chunk in input_chunks:
while retries < max_retries:
try:
output = get_completion(input_chunk)
#print(output)
api_calls += 1 # Increment the API calls counter
# Check if the output is empty
if output:
# Check if the output contains an error message
if 'error' in output:
print("Error in API response, retrying...")
retries += 1
continue
break
else:
raise ValueError("Empty output")
except Exception as e:
print(f"Error in API call: {e}")
retries += 1
if output is None or 'error' in output:
print("Failed to get API response after maximum 10 retries.")
return {"text": input, "entities": []}
merged_tokens = merge_tokens(output)
# Debug: Print the merged tokens for the current output
print(f"Merged tokens for chunk {api_calls}: {merged_tokens}")
all_merged_tokens.extend(merged_tokens)
print(all_merged_tokens)
# Debug: Print the number of API calls made
# print(f"Number of API calls made: {api_calls}")
return {"text": input, "entities": all_merged_tokens}
##########################################################################################################
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
# Load the tokenizer and model for the pipeline
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
# Create the NER pipeline
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
##############################################################################################
def ner(input):
max_retries = 10
retries = 0
output = None
# Initialize an empty list to store the merged tokens from all chunks
all_merged_tokens = []
# Remove HTML tags from the input text
input_no_html = remove_html_tags(input)
# Split the input text into chunks
input_chunks = split_input_text(input_no_html, 500)
# Initialize an empty list to store the entities from all chunks
all_entities = []
# Debug: Print the number of chunks created
print(f"Number of input chunks: {len(input_chunks)}")
for input_chunk in input_chunks:
while retries < max_retries:
try:
output = pipe(input_chunk)
if output:
break
else:
raise ValueError("Empty output")
except Exception as e:
print(f"Error in pipeline call: {e}")
retries += 1
if output is None:
print("Failed to get pipeline output after maximum 10 retries.")
return {"text": input, "entities": []}
# Remove unwanted entity groups
filtered_output = [
entity for entity in output
if entity['entity_group'] not in [
'Coreference',
'Detailed_description',
'Lab_value',
# 'Diagnostic_procedure',
'Personal_background',
'History',
'Family_history',
'Outcome',
'Subject',
'Date',
'Distance',
'Severity',
'Activity',
'Duration',
'Administration',
'Sex',
'Age',
'Sign_symptom',
'Therapeutic_procedure',
'Biological_structure'
]
]
# Debug: Print the entities for the current output after filtering
print(f"Filtered entities for chunk {len(all_entities) + 1}: {filtered_output}")
merged_tokens = merge_tokens(filtered_output)
all_merged_tokens.extend(merged_tokens)
print(all_entities)
return {"text": input, "entities": all_merged_tokens}
##############################################################################
def ner_unflitered(input):
max_retries = 10
retries = 0
output = None
# Initialize an empty list to store the merged tokens from all chunks
all_merged_tokens = []
# Remove HTML tags from the input text
input_no_html = remove_html_tags(input)
# Split the input text into chunks
input_chunks = split_input_text(input_no_html, 500)
# Initialize an empty list to store the entities from all chunks
all_entities = []
# Debug: Print the number of chunks created
print(f"Number of input chunks: {len(input_chunks)}")
for input_chunk in input_chunks:
while retries < max_retries:
try:
output = pipe(input_chunk)
# Check if the output is empty
if output:
#print(output)
break
else:
raise ValueError("Empty output")
except Exception as e:
print(f"Error in pipeline call: {e}")
retries += 1
if output is None:
print("Failed to get pipeline output after maximum 10 retries.")
return {"text": input, "entities": []}
# Debug: Print the entities for the current output
print(f"Entities for chunk {len(all_entities) + 1}: {output}")
merged_tokens = merge_tokens(output)
# Debug: Print the merged tokens for the current output
#print(f"Merged tokens for chunk {api_calls}: {merged_tokens}")
all_merged_tokens.extend(merged_tokens)
#all_entities.extend(output)
print(all_entities)
return {"text": input, "entities": all_merged_tokens}
#############################################################################################################################################
async def trial_view_map(nctID):
nctID = nctID.strip() # Remove leading and trailing spaces
###### # Check if nctID is valid
if not nctID.startswith('NCT') or not (10 <= len(nctID) <= 12):
return "Not a Valid NCT ID has been entered", None, None
status = "Recruiting"
#summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(NCTId=nctID)
summary_stats, html_table_conditions, html_table, summary_stats_sites, html_table_add,html_table_drugs = await gradio_wrapper_nct_spn(NCTId=nctID, status = status)
#### error traps
#trial_buttons.click(trial_view_map, inputs=[nctID_inputs], outputs=[summary_block_trial_map, world_map])
#################################################################################################################################
if html_table_add is None:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
df = pd.read_html(html_table_add)[0]
world_map = plot_trial_site_world_map(df)
if world_map is None:
return "Sorry, the plot could not be generated. Please try again by slecting a country!", None, None
return summary_stats_sites, world_map, html_table_add
#return html_table, formatted_html_inclusions,formatted_html_exclusions,world_map
####################################################################################################################################################
async def trial_view (nctID):
nctID = nctID.strip() # Remove leading and trailing spaces
###### # Check if nctID is valid
if not nctID.startswith('NCT') or not (10 <= len(nctID) <= 12):
return "Not a Valid NCT ID has been entered", None, None
status = "Recruiting"
summary_stats,summary_stats_collb, html_table_conditions, html_table_conditions_collb, html_table,html_table_drugs = await gradio_wrapper_nct(NCTId=nctID, status = status)
#### error traps
formatted_inclusions = get_formatted_inclusion_criteria(nctID)
print(formatted_inclusions)
formatted_exclusions = get_formatted_exclusion_criteria(nctID)
print( formatted_exclusions)
# Check if both formatted_inclusions and formatted_exclusions are empty
if not formatted_inclusions and not formatted_exclusions:
return "No data matched from Clinical Trials.Gov, Please try with new selection !", None, None
inclusion_concepts = ner(formatted_inclusions)
exclusion_concepts = ner(formatted_exclusions)
#return html_table, formatted_html_inclusions, formatted_html_exclusions,inclusion_concepts,exclusion_concepts
return html_table, inclusion_concepts,exclusion_concepts
############################### Design the interface####################################################################################
## Added after Spet 27 Failure
from gradio.components import Dropdown
###############################################################################################################################################################################
trial_app = gr.Blocks()
with trial_app:
gr.Markdown("<center style='font-size: 34px;'><b>Trial Connect</b></center>")
with gr.Tabs():
############################################################ Sponsors ######################################################################
with gr.TabItem("Sponsors"):
# 1st Row
with gr.Row():
##########################################################################################################
with gr.Column():
sponsor_input = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
#############################################################################################################################################################################################################
#######################################################################################################################################################
with gr.Column():
#disease_input = gr.inputs.Dropdown(
disease_input = gr.Dropdown(
choices=[ "Cardiovascular Diseases", \
"Depressive Disorder","Digestive System Diseases","Endocrine System Diseases",\
"Eye Diseases","Heart Diseases", "Immune System Diseases", "Infections","Liver Diseases", \
"Metabolic Diseases","Neoplasms","Nervous System Diseases","Oncology" , \
"Renal Diseases", "Respiratory Tract Diseases", \
"Skin Diseases","Stress Disorder", "Virology" \
],
label="Choose a Disease Category"
)
############################################
with gr.Column():
disease_input_text = gr.Textbox(lines=1, label="Or Type the Disease Name:")
######################################################################################################################################################################
with gr.Column():
academia_input = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
##############################################################################################################################################
################# # 3rd row#################################################################
with gr.Row():
#with gr.Column():
sponsor_button = gr.Button("Show Sponsor Collaborators")
# Then, create the clear button and add the dropdown input to it
clear_btn = gr.ClearButton()
clear_btn.add(sponsor_input)
clear_btn.add(academia_input)
clear_btn.add(disease_input)
clear_btn.add(disease_input_text)
##################################################################################################################################################################################
with gr.Row():
with gr.Column():
summary_block = gr.HTML(label="Lead Sponsors for Recruiting Clinical Trials:" )
with gr.Column():
summary_block_collbs = gr.HTML(label="Collaborators in Recruiting Clinical Trials:" )
###################################################################################################################################
with gr.Row():
with gr.Column():
condition_others = gr.Plot()
with gr.Column():
condition_sunbursts = gr.Plot()
with gr.Column():
sponsor_trees = gr.Plot()
with gr.Column():
collaborator_trees = gr.Plot()
####################################################################################################################################################
with gr.Row():
gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Sponsor Only Trials</h1>')
with gr.Row():
output_block_conditions = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
with gr.Row():
gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Collaborator and Sponsor Trials</h1>')
with gr.Row():
output_block_conditions_collbs = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Collaborators")
clear_btn.add(summary_block)
clear_btn.add(summary_block_collbs)
clear_btn.add(output_block_conditions)
clear_btn.add(output_block_conditions_collbs)
clear_btn.add(condition_sunbursts)
clear_btn.add(sponsor_trees)
# clear_btn.add(collaborator_trees)
clear_btn.add(condition_others)
##############################################################################################################################################
################################################################ Conditions ###############################################################################################
with gr.TabItem("Conditions"):
with gr.Row():
with gr.Column():
#### #########################################################################################################################################################################################################
s_sponsor_input_phc = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
##############################################################################################################
with gr.Column():
s_disease_input_phc = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition"
)
#################################################################################################################################################################
with gr.Column():
s_disease_input_type_phc = gr.Textbox(lines=1, label="Or Type a Condition:")
######################################################################################################################################################################
with gr.Column():
s_academia_input_phc = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
############################################################################################################################################
######################################################################################################################################################################
# 3rd Row
with gr.Row(): #academia_input = gr.inputs.Dropdown(
s_button_phc = gr.Button("Show Conditions")
# Then, create the clear button and add the dropdown input to it
clear_btn_phc = gr.ClearButton()
clear_btn_phc.add(s_sponsor_input_phc)
clear_btn_phc.add(s_academia_input_phc)
clear_btn_phc.add(s_disease_input_phc)
clear_btn_phc.add(s_disease_input_type_phc)
#########################################################################################################################################################################
with gr.Row():
summary_block_phc = gr.HTML(label="Conditions Now Recruiting for Clinical Trials:" )
#############################################################################################################################################################
# with gr.Row():
# nct_org_map = gr.Plot()
##########################################################################################################################################################
####################################################################################################################################################
# with gr.Row():
# gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Conditions by Trials and Phase</h1>')
with gr.Row():
# with gr.Column():
tree_map_cond_nct = gr.Plot()
with gr.Row():
output_block_conditions_phc = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
clear_btn_phc.add(summary_block_phc)
clear_btn_phc.add(output_block_conditions_phc)
clear_btn_phc.add(tree_map_cond_nct)
#clear_btn_phs.add(nct_org_map)
#########################################################################
################################################################ Trials ###############################################################################################
with gr.TabItem("Trials"):
with gr.Row():
with gr.Column():
#### #########################################################################################################################################################################################################
s_sponsor_input_phs = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
##############################################################################################################
with gr.Column():
s_disease_input_phs = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition"
)
#################################################################################################################################################################
with gr.Column():
s_disease_input_type_phs = gr.Textbox(lines=1, label="Or Type a Condition:")
######################################################################################################################################################################
with gr.Column():
s_academia_input_phs = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
############################################################################################################################################
######################################################################################################################################################################
# 3rd Row
with gr.Row(): #academia_input = gr.inputs.Dropdown(
s_button_phs = gr.Button("Show Trials")
# Then, create the clear button and add the dropdown input to it
clear_btn_phs = gr.ClearButton()
clear_btn_phs.add(s_sponsor_input_phs)
clear_btn_phs.add(s_academia_input_phs)
clear_btn_phs.add(s_disease_input_phs)
clear_btn_phs.add(s_disease_input_type_phs)
#########################################################################################################################################################################
with gr.Row():
summary_block_phs = gr.HTML(label="Conditions and Sponsors Now Recruiting for Clinical Trials:" )
#############################################################################################################################################################
with gr.Row():
nct_org_map = gr.Plot()
##########################################################################################################################################################
####################################################################################################################################################
# with gr.Row():
# gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Recruiting Trials by Phase</h1>')
# with gr.Row():
# with gr.Column():
# tree_map_cond_nct = gr.Plot()
with gr.Row():
output_block_conditions_phs = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
clear_btn_phs.add(summary_block_phs)
clear_btn_phs.add(output_block_conditions_phs)
clear_btn_phs.add(nct_org_map)
#########################################################################
##################################################################### Country#####################################################
with gr.TabItem("Countries"):
##########################################################################
with gr.Row():
###############################################################################
with gr.Column():
sponsor_input_con = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
###############################################################################################################################################################################################
with gr.Column():
condition_input_con = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition")
##############################################################################################################################################################
###############################################################################
with gr.Column():
country_input_tr = gr.Dropdown(
choices=["United States", "Argentina","Australia", "Austria","Belgium","Brazil","Bulgaria","Canada","Columbia","China", "Chile","Croatia","Czechia","Denmark","Finland","France", "Greece","Germany","Hungary",\
"India","Ireland","Israel","Italy","Japan","Korea","Latvia",\
"Malaysia","Mexico","Netherlands", \
"New Zealand","Norway","Poland","Portugal","Romania", "Serbia","Singapore","Slovakia","Spain", "South Africa","Sweden", "Switzerland","Taiwan","Turkey",\
"United Kingdom"\
],
label="Choose a Country")
###########################################################################################################################################################################################
###############################################################################
with gr.Column():
condition_input_type = gr.Textbox(lines=1, label="Or Type a Condition:")
###############################################################################
with gr.Column():
academia_input_con = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = " Or Choose a Research Institute")
###########################################################################################################################################################
with gr.Row():
condition_button = gr.Button("Show Trial Countries")
# Then, create the clear button and add the dropdown input to it
clear_cn_btn = gr.ClearButton()
clear_cn_btn.add(condition_input_con)
clear_cn_btn.add(sponsor_input_con)
clear_cn_btn.add(academia_input_con)
clear_cn_btn.add(condition_input_type)
clear_cn_btn.add(country_input_tr)
##############################################################################################################################################################################
with gr.Row():
summary_block_cond = gr.HTML(label="Countries with Recruiting Clinical Trials:" )
# with gr.Row():
#bubble_map_trial = gr.Plot()
with gr.Row():
trial_countries = gr.Plot()
with gr.Row():
condition_output = gr.HTML(label="List of Recruiting Trials")
# condition_output = gr.Textbox(label="List of Recruiting Trials")
## clear output ?
clear_cn_btn.add(summary_block_cond)
clear_cn_btn.add(trial_countries)
#clear_cn_btn.add(bubble_map_trial)
clear_cn_btn.add(condition_output)
############################################################ Site ############################# #####################################################################
with gr.TabItem("Sites"):
###############################################################
with gr.Row():
################################################################
with gr.Column():
##########################################################################################################################
sponsor_input_con_s = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
###################################################################################################################
################################################################
with gr.Column():
condition_input_s = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition")
#################################################################################################################################################
################################################################
with gr.Column():
country_input_s = gr.Dropdown(
choices=["United States", "Argentina","Australia", "Austria","Belgium","Brazil","Bulgaria","Canada","Columbia","China", "Chile","Croatia","Czechia","Denmark","Finland","France", "Greece","Germany","Hungary",\
"India","Ireland","Israel","Italy","Japan","Korea","Latvia",\
"Malaysia","Mexico","Netherlands", \
"New Zealand","Norway","Poland","Portugal","Romania", "Serbia","Singapore","Slovakia","Spain", "South Africa","Sweden", "Switzerland","Taiwan","Turkey",\
"United Kingdom"\
],
label="Choose a Country")
################################################################
with gr.Column():
condition_input_site = gr.Textbox(lines=1, label="Or Type a Condition:")
################################################################
with gr.Column():
academia_input_con_s = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
#############################################################################################################################################
##################################################################################################################################################
###############################################################
with gr.Row():
# with gr.Column():
condition_button_s = gr.Button("Show Trial Sites")
# Then, create the clear button and add the dropdown input to it
clear_cn_btn = gr.ClearButton()
clear_cn_btn.add(condition_input_s)
clear_cn_btn.add(condition_input_site)
clear_cn_btn.add(sponsor_input_con_s)
clear_cn_btn.add(academia_input_con_s)
clear_cn_btn.add(country_input_s)
#################################################################################################################################
with gr.Row():
#summary_block = gr.outputs.Textbox(label="Conditions and Sponsors Now Recruiting for Clinical Trials:")
summary_block_cond_s = gr.HTML(label="Sites where Sponsors Now Recruiting for Clinical Trials:" )
#with gr.Row():
#world_map = gr.Plot()
with gr.Row():
site_cond = gr.Plot()
####################################################################################################################################################
with gr.Row():
gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Recruiting Sites with Trial Ids and Conditions </h1>')
with gr.Row():
country_site =gr.Plot()
with gr.Row():
condition_output_s = gr.HTML(label="List of Recruiting Trials for Country, Sites")
## clear output ?
clear_cn_btn.add(summary_block_cond_s)
clear_cn_btn.add(condition_output_s)
clear_cn_btn.add(country_site)
clear_cn_btn.add(site_cond)
############################################################ ASSETS ###############################################################
with gr.TabItem("Drugs"):
############################################################################################
with gr.Row():
with gr.Column():
#############################################################################################################################################
s_sponsor_input = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
#####################################################################################################################################################################################
with gr.Column():
s_disease_input = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label= "Choose a Condition"
)
############################################################################################
#################################################################################################################################################################
with gr.Column():
s_disease_input_type = gr.Textbox(lines=1, label="Or Type a Condition:")
## with gr.Row():
#####################################################################################################################################################################################
with gr.Column():
s_academia_input = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
#####################################################################################################################################################################################
############################################################################################
with gr.Row():
s_drug_button = gr.Button("Show Drugs")
# Then, create the clear button and add the dropdown input to it
clear_btn = gr.ClearButton()
clear_btn.add(s_sponsor_input)
clear_btn.add(s_academia_input)
clear_btn.add(s_disease_input)
clear_btn.add(s_disease_input_type)
with gr.Row():
drug_summary_block = gr.HTML(label="Conditions and Drug Assets, Sponsors Now Recruiting for Clinical Trials:" )
with gr.Row():
sankey_map_drug = gr.Plot()
with gr.Row():
drug_output_block_conditions = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
clear_btn.add(drug_summary_block)
clear_btn.add(drug_output_block_conditions)
clear_btn.add(sankey_map_drug)
############################################################################################################################################################################################
############################################################################# TIMELINES #############################################################################
with gr.TabItem("Timeline"):
##############################################################
with gr.Row():
with gr.Column():
##########################################################################################################################################
sponsor_input_cont = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
###############################################################################################################################################################
with gr.Column():
condition_input_cont= gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition")
###############################################################################################################################################################
with gr.Column():
country_input_trt = gr.Dropdown(
choices=["United States", "Argentina","Australia", "Austria","Belgium","Brazil","Bulgaria","Canada","Columbia","China", "Chile","Croatia","Czechia","Denmark","Finland","France", "Greece","Germany","Hungary",\
"India","Ireland","Israel","Italy","Japan","Korea","Latvia",\
"Malaysia","Mexico","Netherlands", \
"New Zealand","Norway","Poland","Portugal","Romania", "Serbia","Singapore","Slovakia","Spain", "South Africa","Sweden", "Switzerland","Taiwan","Turkey",\
"United Kingdom"\
],
label="Choose a Country")
###############################################################################################################################################################
with gr.Column():
condition_input_typet = gr.Textbox(lines=1, label="Or Type a Condition:")
###############################################################################################################################################################
with gr.Column():
academia_input_cont = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = " Or Choose a Research Institute")
with gr.Row():
condition_button_t = gr.Button("Show Timelines")
# Then, create the clear button and add the dropdown input to it
clear_cn_btn = gr.ClearButton()
clear_cn_btn.add(condition_input_cont)
clear_cn_btn.add(sponsor_input_cont)
clear_cn_btn.add(academia_input_cont)
clear_cn_btn.add(condition_input_typet)
clear_cn_btn.add(country_input_trt)
##################################################################################################################################
with gr.Row():
summary_block_condt = gr.HTML(label="Countries with Recruiting Clinical Trials:" )
with gr.Row():
bubble_map_trial = gr.Plot()
with gr.Row():
condition_outputt = gr.HTML(label="List of Recruiting Trials")
# condition_output = gr.Textbox(label="List of Recruiting Trials")
## clear output ?
clear_cn_btn.add(summary_block_condt)
clear_cn_btn.add(bubble_map_trial)
clear_cn_btn.add(condition_outputt)
############################################################ Eligibility ##############
with gr.TabItem("Eligibility"):
with gr.Row():
#nctID_input = gr.inputs.Textbox(lines=1, label="Type Trial NctId:")
nctID_input = gr.Textbox(lines=1, label="Type Trial NCT Id,For Example: NCT05512377 or NCT04924075 or NCT04419506 etc.")
trial_button = gr.Button("Show Eligibility - 30 Seconds Wait Time")
#Then, create the clear button and add the dropdown input to it
clear_tn_btn = gr.ClearButton()
clear_tn_btn.add(nctID_input )
# with gr.Row():
# with gr.Column():
# formatted_inclusions_output = gr.HTML(label="Inclusions")
# with gr.Column():
# formatted_exclusions_output = gr.HTML(label="Exclusions")
################################################################################################################################
###############################################################################################
with gr.Row():
trial_output = gr.HTML(label="Detail of Recruiting Trials")
################################################
with gr.Row():
with gr.Column():
concept_inclusion= gr.HighlightedText(label="Display of Inclusion Concepts")
with gr.Column():
concept_exclusion= gr.HighlightedText(label="Display of Exclusion Concepts")
clear_tn_btn.add(trial_output)
# clear_tn_btn.add(formatted_inclusions_output)
# clear_tn_btn.add(formatted_exclusions_output)
clear_tn_btn.add(concept_inclusion)
clear_tn_btn.add(concept_exclusion)
##############################################################################################################################################
############################################################ Trial Map ##############
with gr.TabItem("Trial Sites"):
with gr.Row():
#nctID_input = gr.inputs.Textbox(lines=1, label="Type Trial NctId:")
nctID_inputs = gr.Textbox(lines=1, label="Type Trial NCT Id,For Example: NCT05512377")
trial_buttons = gr.Button("Show Sites Map: Wait Time 45 seconds")
#Then, create the clear button and add the dropdown input to it
clear_tn_btns = gr.ClearButton()
clear_tn_btns.add(nctID_input )
################################################
with gr.Row():
summary_block_trial_map = gr.HTML(label="Site Map for Recruiting Clinical Trials:" )
with gr.Row():
world_map = gr.Plot()
with gr.Row():
trial_output_map = gr.HTML(label="List of Recruiting Country, Sites")
clear_tn_btns.add(summary_block_trial_map)
clear_tn_btns.add(world_map)
clear_tn_btns.add(trial_output_map)
##############################################################################################################################################
################################################################ Future Trials ###############################################################################################
with gr.TabItem("Upcoming Trials"):
with gr.Row():
with gr.Column():
#### #########################################################################################################################################################################################################
s_sponsor_input_phs_n = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
##################################################################################################################################################################################################################
with gr.Column():
s_disease_input_phs_n = gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition"
)
#################################################################################################################################################################
with gr.Column():
s_disease_input_type_phs_n = gr.Textbox(lines=1, label="Or Type a Condition:")
######################################################################################################################################################################
with gr.Column():
s_academia_input_phs_n = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
############################################################################################################################################
######################################################################################################################################################################
# 3rd Row
with gr.Row(): #academia_input = gr.inputs.Dropdown(
s_button_phs_n = gr.Button("Show Trials")
# Then, create the clear button and add the dropdown input to it
clear_btn_phs = gr.ClearButton()
clear_btn_phs.add(s_sponsor_input_phs_n)
clear_btn_phs.add(s_academia_input_phs_n)
clear_btn_phs.add(s_disease_input_phs_n)
clear_btn_phs.add(s_disease_input_type_phs_n)
#########################################################################################################################################################################
with gr.Row():
summary_block_phs_n = gr.HTML(label="Conditions and Sponsors Will Recruit for Clinical Trials:" )
with gr.Row():
# with gr.Column():
tree_map_cond_nct_n = gr.Plot()
################################################################
####################################################################################################################################################
with gr.Row():
gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Upcoming Trials With Timelines </h1>')
# with gr.Row():
# nct_org_map_n = gr.Plot()
################################################################
with gr.Row():
trial_plot = gr.Plot()
with gr.Row():
output_block_conditions_phs_n = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
clear_btn_phs.add(summary_block_phs_n)
clear_btn_phs.add(output_block_conditions_phs_n)
# clear_btn_phs.add(nct_org_map_n)
clear_btn_phs.add(trial_plot)
##############################################################################################################################################
################################################################ Completed Trials ###############################################################################################
with gr.TabItem("Completed Trials"):
with gr.Row():
with gr.Column():
#### #########################################################################################################################################################################################################
s_sponsor_input_phs_c = gr.Dropdown(
############################################################################
choices=[ "AbbVie", "Amgen","AstraZeneca","Bayer", "BioNTech SE","Biogen","Bristol-Myers Squibb", "Boehringer Ingelheim", \
"CSL Behring", "Daiichi Sankyo, Inc.",\
"Eli Lilly and Company","Eisai Inc.","Gilead Sciences","GlaxoSmithKline", "Hoffmann-La Roche", \
"Janssen Research & Development, LLC","Merck Sharp & Dohme LLC","ModernaTX, Inc.", \
"Novartis Pharmaceuticals", "Novo Nordisk A/S","Pfizer", "Regeneron Pharmaceuticals", "Sanofi","Takeda"],
label="Choose a Pharma "
)
##################################################################################################################################################################################################################
with gr.Column():
s_disease_input_phs_c= gr.Dropdown(
choices=["Cancer","Breast Cancer","Biliary Tract Cancer", "Bladder Cancer",\
"Carcinoma","Cervical Cancer","Colon Cancer","Colorectal Cancer","Endometrial Cancer",\
"Esophageal Cancer","Gallbladder Carcinoma","Gastric Cancer","Glioblastoma", "Head and Neck Cancer",\
"Head and Neck Squamous Cell Carcinoma (HNSCC)","Hepatic Cancer",\
"Kidney Cancer","Liver Cancer", "Lung Cancer","Melanoma","Non-Hodgkin Lymphoma","Non-Small Cell Lung Cancer",\
"Ovarian Cancer","Pancreatic Cancer","Prostate Cancer","Renal Cancer",\
"Solid Tumor","Stomach Cancer","Rectal Cancer","Triple Negative Breast Cancer","Thyroid Cancer",\
"Urothelial Carcinoma",\
"Alzheimer","Asthma","Attention Deficit Hyperactivity Disorder","Bronchiectasis","Cognitive Deficit", "COPD", \
"Chronic Kidney Diseases","Crohn Disease","Diabetes", "Diabetic Retinopathy","Depression","Depressive Disorder",\
" Major","Metabolic", "Generalized Pustular Psoriasis",\
"Heart Failure","Hepatic Insufficiency","Hypertension","Idiopathic Pulmonary Fibrosis", "Interstitial",\
"Liver Cirrhosis", \
"NASH","Non-alcoholic Fatty Liver Disease", "Obesity", "Pancreatic Diseases","Psoriasis", \
"Psychological Trauma","Renal", "Respiratory",\
"Schizophrenia", "PTSD", \
"Venous Thromboembolism", "Wet"],
label="Choose a Condition"
)
#################################################################################################################################################################
with gr.Column():
s_disease_input_type_phs_c = gr.Textbox(lines=1, label="Or Type a Condition:")
######################################################################################################################################################################
with gr.Column():
s_academia_input_phs_c = gr.Dropdown(
choices = [ "Baylor Breast Cancer Center","Beth Israel Deaconess Medical Center", "City of Hope Medical Center" ,"Cornell University", "Columbia University","Children's Oncology Group",\
"Dana-Farber Cancer Institute", "Dartmouth College",\
"Duke University", "European Institute of Oncology","Fred Hutchinson Cancer Center","Harvard University", "H. Lee Moffitt Cancer Center and Research Institute",\
"John Hopkins University", "Kaiser Permanente", "Massachusetts General Hospital", "Mayo Clinic",\
"M.D. Anderson Cancer Center", "Memorial Sloan Kettering Cancer Center", "National Cancer Institute",\
"Northwestern University", "NYU Langone Health","Ohio State University Comprehensive Cancer Center","Rutgers, The State University of New Jersey","Stanford University", \
"Tufts University","University of Washington",\
"Vanderbilt-Ingram Cancer Center", "Yale University"],
label = "Or Choose a Research Institute")
############################################################################################################################################
######################################################################################################################################################################
# 3rd Row
with gr.Row(): #academia_input = gr.inputs.Dropdown(
s_button_phs_c = gr.Button("Show Trials")
# Then, create the clear button and add the dropdown input to it
clear_btn_phs = gr.ClearButton()
clear_btn_phs.add(s_sponsor_input_phs_c)
clear_btn_phs.add(s_academia_input_phs_c)
clear_btn_phs.add(s_disease_input_phs_c)
clear_btn_phs.add(s_disease_input_type_phs_c)
#########################################################################################################################################################################
with gr.Row():
summary_block_phs_c = gr.HTML(label="Conditions and Sponsors Will Recruit for Clinical Trials:" )
with gr.Row():
# with gr.Column():
tree_map_cond_nct_c = gr.Plot()
################################################################
####################################################################################################################################################
with gr.Row():
gr.HTML('<h1 style="font-size:24px; color:black; font-weight:bold;">Recruiting Trials With Organization Study Ids</h1>')
with gr.Row():
nct_org_map_c = gr.Plot()
#######################################################################
with gr.Row():
trial_plot_c = gr.Plot()
#######################################################################
with gr.Row():
time_plot_c = gr.Plot()
with gr.Row():
output_block_conditions_phs_c = gr.HTML(label="Outputs: List of Conditions, Trial Ids and Sponsors")
clear_btn_phs.add(summary_block_phs_c)
clear_btn_phs.add(output_block_conditions_phs_c)
clear_btn_phs.add(tree_map_cond_nct_c)
clear_btn_phs.add(nct_org_map_c)
clear_btn_phs.add(trial_plot_c)
clear_btn_phs.add(time_plot_c)
################################ EVENT BUTTONS at GRADIO ################################################################################################################################
## Sponsors
sponsor_button.click(disease_view, inputs=[disease_input,disease_input_text, sponsor_input, academia_input], outputs=[summary_block,summary_block_collbs,\
output_block_conditions,output_block_conditions_collbs,condition_others,\
condition_sunbursts,sponsor_trees\
,collaborator_trees\
])
## Conditions
s_button_phc.click(disease_view_phc, inputs=[s_disease_input_phc,s_disease_input_type_phc, s_sponsor_input_phc,s_academia_input_phc], outputs=[summary_block_phc, output_block_conditions_phc,\
tree_map_cond_nct])
## Trials
s_button_phs.click(disease_view_phs, inputs=[s_disease_input_phs,s_disease_input_type_phs, s_sponsor_input_phs,s_academia_input_phs], outputs=[summary_block_phs, output_block_conditions_phs,\
nct_org_map])
#s_button_phs_n.click(disease_view_phs_n, inputs=[s_disease_input_phs_n,s_disease_input_type_phs_n, s_sponsor_input_phs_n,s_academia_input_phs_n], outputs=[summary_block_phs_n, output_block_conditions_phs_n,\
# tree_map_cond_nct_n, nct_org_map_n,trial_plot])
s_button_phs_n.click(disease_view_phs_n, inputs=[s_disease_input_phs_n,s_disease_input_type_phs_n, s_sponsor_input_phs_n,s_academia_input_phs_n], outputs=[summary_block_phs_n, output_block_conditions_phs_n,\
tree_map_cond_nct_n, trial_plot])
s_button_phs_c.click(disease_view_phs_c, inputs=[s_disease_input_phs_c,s_disease_input_type_phs_c, s_sponsor_input_phs_c,s_academia_input_phs_c], outputs=[summary_block_phs_c, output_block_conditions_phs_c,\
tree_map_cond_nct_c, nct_org_map_c,trial_plot_c, time_plot_c])
### Drugs
s_drug_button.click(drug_view, inputs=[s_disease_input, s_disease_input_type, s_sponsor_input, s_academia_input], outputs=[drug_summary_block,drug_output_block_conditions, sankey_map_drug ])
## Country
condition_button.click(condition_view, inputs=[condition_input_con, country_input_tr,condition_input_type, sponsor_input_con, academia_input_con], outputs=[summary_block_cond,condition_output,trial_countries])
## Site
condition_button_s.click(condition_view_s, inputs=[condition_input_s, country_input_s, condition_input_site,sponsor_input_con_s, academia_input_con_s], \
outputs=[summary_block_cond_s,condition_output_s, site_cond,country_site])
##Timelines
condition_button_t.click(condition_viewt, inputs=[condition_input_cont, country_input_trt,condition_input_typet, sponsor_input_cont, academia_input_cont], outputs=[summary_block_condt,condition_outputt,bubble_map_trial])
## Map
# Test this way NCT04419506
# trial_button.click(trial_view, inputs=[nctID_input], outputs=[trial_output, formatted_inclusions_output,formatted_exclusions_output,concept_inclusion,concept_exclusion])
# Test this way NCT04419506
trial_button.click(trial_view, inputs=[nctID_input], outputs=[trial_output,concept_inclusion,concept_exclusion])
trial_buttons.click(trial_view_map, inputs=[nctID_inputs], outputs=[summary_block_trial_map, world_map,trial_output_map])
trial_app.launch(share=True)
#trial_app.launch(share=True, debug = "TRUE")