Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import torchvision
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.optim as optim
|
8 |
+
|
9 |
+
# This is just to show an interface where one draws a number and gets prediction.
|
10 |
+
|
11 |
+
n_epochs = 10
|
12 |
+
batch_size_train = 128
|
13 |
+
batch_size_test = 1000
|
14 |
+
learning_rate = 0.01
|
15 |
+
momentum = 0.5
|
16 |
+
log_interval = 10
|
17 |
+
random_seed = 1
|
18 |
+
TRAIN_CUTOFF = 10
|
19 |
+
MODEL_PATH = 'model'
|
20 |
+
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
|
21 |
+
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
|
22 |
+
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
|
23 |
+
REPOSITORY_DIR = "data"
|
24 |
+
LOCAL_DIR = 'data_local'
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
30 |
+
MODEL_REPO = 'mnist-adversarial-model'
|
31 |
+
HF_DATASET ="mnist-adversarial-dataset"
|
32 |
+
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
|
33 |
+
MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}"
|
34 |
+
|
35 |
+
|
36 |
+
torch.backends.cudnn.enabled = False
|
37 |
+
torch.manual_seed(random_seed)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
TRAIN_TRANSFORM = torchvision.transforms.Compose([
|
42 |
+
torchvision.transforms.ToTensor(),
|
43 |
+
torchvision.transforms.Normalize(
|
44 |
+
(0.1307,), (0.3081,))
|
45 |
+
])
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
|
50 |
+
class MNIST_Model(nn.Module):
|
51 |
+
def __init__(self):
|
52 |
+
super(MNIST_Model, self).__init__()
|
53 |
+
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
54 |
+
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
55 |
+
self.conv2_drop = nn.Dropout2d()
|
56 |
+
self.fc1 = nn.Linear(320, 50)
|
57 |
+
self.fc2 = nn.Linear(50, 10)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
61 |
+
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
62 |
+
x = x.view(-1, 320)
|
63 |
+
x = F.relu(self.fc1(x))
|
64 |
+
x = F.dropout(x, training=self.training)
|
65 |
+
x = self.fc2(x)
|
66 |
+
return F.log_softmax(x)
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
random_seed = 1
|
72 |
+
torch.backends.cudnn.enabled = False
|
73 |
+
torch.manual_seed(random_seed)
|
74 |
+
|
75 |
+
network = MNIST_Model() #Initialize the model with random weights
|
76 |
+
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
77 |
+
momentum=momentum)
|
78 |
+
|
79 |
+
|
80 |
+
# Train
|
81 |
+
#train(n_epochs,network,optimizer)
|
82 |
+
|
83 |
+
|
84 |
+
def image_classifier(inp):
|
85 |
+
"""
|
86 |
+
It takes an image as input and returns a dictionary of class labels and their corresponding
|
87 |
+
confidence scores.
|
88 |
+
|
89 |
+
:param inp: the image to be classified
|
90 |
+
:return: A dictionary of the class index and the confidence value.
|
91 |
+
"""
|
92 |
+
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
|
93 |
+
with torch.no_grad():
|
94 |
+
|
95 |
+
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
|
96 |
+
#pred_number = prediction.data.max(1, keepdim=True)[1]
|
97 |
+
sorted_prediction = torch.sort(prediction,descending=True)
|
98 |
+
confidences={}
|
99 |
+
for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
|
100 |
+
confidences.update({s:v})
|
101 |
+
return confidences
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def main():
|
107 |
+
block = gr.Blocks()
|
108 |
+
|
109 |
+
with block:
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
|
113 |
+
|
114 |
+
image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
|
115 |
+
label_output = gr.outputs.Label(num_top_classes=2)
|
116 |
+
|
117 |
+
image_input.change(image_classifier,inputs = [image_input],outputs=[label_output])
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
block.launch()
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|