File size: 6,188 Bytes
c6aa3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, BSHTMLLoader, UnstructuredImageLoader
# Import things that are needed generically
from langchain.memory import ConversationBufferMemory
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain import LLMMathChain
#setting a memory for conversations
import panel as pn
import os
from dotenv import load_dotenv
load_dotenv()
memory = ConversationBufferMemory(memory_key="chat_history")
   
    
def qa_agent(file, query, chain_type, k):
    """_summary_

    Args:
        file (_type_): _description_
        query (_type_): _description_
        chain_type (_type_): _description_
        k (_type_): _description_

    Returns:
        _type_: _description_
    """
    llm = OpenAI(temperature=0)
    llm_math_chain = LLMMathChain(llm=OpenAI(temperature=0))

    # load document
    if file.endswith('pdf'):
        loader = PyPDFLoader(file)
    elif file.endswith('docx'):
        loader = Docx2txtLoader(file)
    elif file.endswith('jpg') or file.endswith('jpg'):
        loader = UnstructuredImageLoader(file, mode="elements")
    else:
        raise ValueError
    
    documents = loader.load()
    # split the documents into chunks
    text_splitter = CharacterTextSplitter(chunk_size=3228, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    # select which embeddings we want to use
    embeddings = OpenAIEmbeddings()

    # create the vectorestore to use as the index
    db = Chroma.from_documents(texts, embeddings)
    # expose this index in a retriever interface
    retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
    # create a chain to answer questions 
    qa = RetrievalQA.from_chain_type(
        llm=llm, chain_type=chain_type, retriever=retriever)
    
    '--------------------------------- CREATE AGENT ---------------------------------'
    tools = [
    Tool(
        name = "Demo",
        func=qa.run,
        description="use this as the primary source of context information when you are asked the question. \
                    Always search for the answers using only the provided tool, don't make up answers yourself"
        
    ),
    
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="Useful for answering math-related questions within the given document. Avoid speculating beyond the document's content. If you don't know the answer to a question, simply state 'I don't know'.",
       return_direct=True #return tool directly to the user
    )

    ]
    # Construct the agent. We will use the default agent type here.
    # See documentation for a full list of options.

    agent = initialize_agent(
        tools,
        agent= AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        llm=llm,
        memory=memory,
        verbose=True,
        )
    
    result = agent.run(input = query)

    return result

#'Explain what the proposed Approach in this Paper is all about'

'------------------------------ Panel App ---------------------------------'

pn.extension('texteditor', template="bootstrap", sizing_mode='stretch_width',theme='dark' )
pn.state.template.param.update(
    main_max_width="690px",
    header_background="blue",
    title='DocumentAgent Application'
)

#######Widget###########
file_input = pn.widgets.FileInput(width=300)
openaikey = pn.widgets.PasswordInput(
    value="", placeholder="Enter your OpenAI API Key here...", width=300
)
prompt = pn.widgets.TextEditor(
    value="", placeholder="Enter your questions here...", height=160, toolbar=False
)
run_button = pn.widgets.Button(name="Run!", margin=(25, 50), background='#f0f0f0', button_type='primary')

select_k = pn.widgets.IntSlider(
    name="Number of relevant chunks", start=1, end=5, step=1, value=2
)
select_chain_type = pn.widgets.RadioButtonGroup(
    name='Chain type', 
    options=['stuff', 'map_reduce', "refine", "map_rerank"],button_type='success'
)


widgets = pn.Row(
    pn.Column(prompt, run_button, margin=5),
    pn.Card(
        "Chain type:",
        pn.Column(select_chain_type, select_k),
        title="Advanced settings", margin=10
    ), width=600
)

convos = []  # store all panel objects in a list

def agent_app(_):
    os.environ["OPENAI_API_KEY"] = openaikey.value
    
    # save pdf file to a temp file 
    if file_input.value is not None:
        file_input.save(f"/.cache/{file_input.filename}")
    
        prompt_text = prompt.value
        if prompt_text:
            result = qa_agent(file=f"/.cache/{file_input.filename}", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)
            convos.extend([
                pn.Row(
                    pn.panel("\U0001F60A", width=10),
                    prompt_text,
                    width=600
                ),
                pn.Row(
                    pn.panel("\U0001F916", width=10),
                    pn.Column(
                        "Relevant source text:",
                        pn.pane.Markdown(result)
                    )
                )
            ])
            #return convos
    return pn.Column(*convos, margin=15, width=575, min_height=400)


qa_interactive = pn.panel(
    pn.bind(agent_app, run_button),
    loading_indicator=True,
)

output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True)
# Apply CSS styles to the WidgetBox
output.background = 'blue'
# layout
pn.Column(
    pn.pane.Markdown("""
    ## \U0001F60A! Question Answering Agent with your Document file
    
    1) Upload a Document in [pdf, docx, .jpg, html] format. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click "Run".
    
    """),
    
    pn.Row(file_input,openaikey),
    output,
    widgets,
    css_classes=['body']).servable()