Spaces:
Runtime error
Runtime error
File size: 1,604 Bytes
86022a1 973388b 86022a1 973388b 86022a1 973388b 704454d 01dd9e0 973388b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import os
def image_mod(image):
return image.rotate(45)
os.system("git clone https://github.com/megvii-research/NAFNet")
os.system("mv NAFNet/* ./")
print(os.listdir('.'))
#os.system("pip install -r requirements.txt")
os.system("python3 setup.py develop --no_cuda_ext")
title = "NAFNet"
description = "Gradio demo for <b>NAFNet: Nonlinear Activation Free Network for Image Restoration</b>. NAFNet achieves state-of-the-art performance on three tasks: image denoising, image debluring and stereo image super-resolution. See the paper and project page for detailed results below. Here, we provide a demo for image denoise and deblur. To use it, simply upload your image, or click one of the examples to load them."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.04676' target='_blank'>Simple Baselines for Image Restoration</a> |<a href='https://arxiv.org/abs/2204.08714' target='_blank'>NAFSSR: Stereo Image Super-Resolution Using NAFNet</a> |<a href='https://github.com/megvii-research/NAFNet' target='_blank'>Github Repo</a></p>"
inference = image_mod
examples = [['demo/noisy.png', 'Denoising'],
['demo/blurry.jpg', 'Deblurring']]
iface = gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input"),
gr.inputs.Radio(["Denoising", "Deblurring"], default="Denoising", label='task'),],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
)
iface.launch(debug=True,enable_queue=True) |