Spaces:
Sleeping
Sleeping
init
Browse files
app.py
CHANGED
@@ -6,15 +6,14 @@ from diffusers import AutoencoderTiny
|
|
6 |
from torchvision.transforms.functional import to_pil_image, center_crop, resize, to_tensor
|
7 |
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
9 |
-
d_type = torch.float32 if device == 'mps' else torch.float16
|
10 |
|
11 |
model_id = "madebyollin/taesd"
|
12 |
-
vae = AutoencoderTiny.from_pretrained(model_id, safetensors=True
|
13 |
|
14 |
|
15 |
@torch.no_grad()
|
16 |
def decode(image):
|
17 |
-
t = to_tensor(image).unsqueeze(0).to(device
|
18 |
unscaled_t = vae.unscale_latents(t)
|
19 |
reconstructed = vae.decoder(unscaled_t).clamp(0, 1)
|
20 |
return to_pil_image(reconstructed[0])
|
|
|
6 |
from torchvision.transforms.functional import to_pil_image, center_crop, resize, to_tensor
|
7 |
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
|
|
9 |
|
10 |
model_id = "madebyollin/taesd"
|
11 |
+
vae = AutoencoderTiny.from_pretrained(model_id, safetensors=True).to(device)
|
12 |
|
13 |
|
14 |
@torch.no_grad()
|
15 |
def decode(image):
|
16 |
+
t = to_tensor(image).unsqueeze(0).to(device)
|
17 |
unscaled_t = vae.unscale_latents(t)
|
18 |
reconstructed = vae.decoder(unscaled_t).clamp(0, 1)
|
19 |
return to_pil_image(reconstructed[0])
|