File size: 6,568 Bytes
b253e66
8443315
 
 
 
 
 
 
 
 
b253e66
8443315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8abd6
 
 
bc6cc98
 
 
 
a7f1a72
bc6cc98
 
b253e66
a114a02
 
d2e3092
 
 
e2a018d
 
d2e3092
 
 
 
 
 
f3cb237
 
d2e3092
 
f3cb237
d2e3092
 
 
f3cb237
 
 
 
 
 
 
 
 
 
b253e66
8d095c3
8443315
fdbcf74
 
d2e3092
 
fdbcf74
d2e3092
fdbcf74
 
8d095c3
fdbcf74
8d095c3
fdbcf74
 
d2e3092
fdbcf74
d2e3092
8d095c3
d2e3092
 
 
 
228bed3
 
 
 
535e574
 
fe36eff
f962dd0
 
b6ab215
dd5d2e0
d2e3092
bb204b7
d2e3092
bb204b7
 
 
 
 
b6ab215
 
bb204b7
b6ab215
bb204b7
e5222c4
 
d2e3092
535e574
 
 
 
 
 
 
d2e3092
 
bb204b7
 
 
 
 
d2e3092
535e574
 
 
d2e3092
 
 
 
535e574
d2e3092
535e574
 
d2e3092
535e574
e5222c4
f962dd0
b6ab215
f962dd0
bb204b7
 
 
 
 
8443315
b6ab215
8443315
a7f1a72
b253e66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from enum import Enum
from pathlib import Path

import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding

root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
    "highlighted_text", path=root_dir / "highlighted_text" / "build"
)

def get_windows_batched(examples: BatchEncoding, window_len: int, stride: int = 1, pad_id: int = 0) -> BatchEncoding:
    return BatchEncoding({
        k: [
            t[i][j : j + window_len] + [
                pad_id if k == "input_ids" else 0
            ] * (j + window_len - len(t[i]))
            for i in range(len(examples["input_ids"]))
            for j in range(0, len(examples["input_ids"][i]) - 1, stride)
        ]
        for k, t in examples.items()
    })

BAD_CHAR = chr(0xfffd)

def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
    cur_ids = []
    result = []
    for idx in ids:
        cur_ids.append(idx)
        decoded = tokenizer.decode(cur_ids)
        if BAD_CHAR not in decoded:
            if strip_whitespace:
                decoded = decoded.strip()
            result.append(decoded)
            del cur_ids[:]
        else:
            result.append("")
    return result

compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]

if not compact_layout:
    st.title("Context length probing")
    st.markdown(
        """[📃 Paper](https://arxiv.org/abs/2212.14815) |
        [🌍 Website](https://cifkao.github.io/context-probing) |
        [🧑‍💻 Code](https://github.com/cifkao/context-probing)
        """
    )

model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.selectbox("Metric", ["KL divergence", "Cross entropy"], index=1)

tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)

# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant)
window_len_options = [
    w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
    if w == 8 or w * (2 * w) * tokenizer.vocab_size <= MAX_MEM
]
window_len = st.select_slider(
    r"Window size ($c_\text{max}$)",
    options=window_len_options,
    value=min(128, window_len_options[-1])
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (tokenizer.vocab_size * window_len) - window_len)

DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()

text = st.text_area("Input text", DEFAULT_TEXT)

if tokenizer.eos_token:
    text += tokenizer.eos_token
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
num_user_tokens = len(input_ids) - (1 if tokenizer.eos_token else 0)

if num_user_tokens < 1 or num_user_tokens > max_tokens:
    st.caption(f":red[{num_user_tokens}]/{max_tokens} tokens")
else:
    st.caption(f"{num_user_tokens}/{max_tokens} tokens")

if num_user_tokens < 1:
    st.error("Please enter at least one token.", icon="🚨")
    st.stop()
if num_user_tokens > max_tokens:
    st.error(
        f"Please enter at most {max_tokens} tokens or try reducing the window size.",
        icon="🚨"
    )
    st.stop()

if metric_name == "KL divergence":
    st.error("KL divergence is not supported yet. Stay tuned!", icon="😭")
    st.stop()

with st.spinner("Loading model…"):
    model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)

window_len = min(window_len, len(input_ids))

@st.cache_data(show_spinner=False)
@torch.inference_mode()
def get_logprobs(_model, _inputs, cache_key):
    del cache_key
    return _model(**_inputs).logits.log_softmax(dim=-1).to(torch.float16)

@st.cache_data(show_spinner=False)
@torch.inference_mode()
def run_context_length_probing(_model, _tokenizer, _inputs, window_len, cache_key):
    del cache_key

    inputs_sliding = get_windows_batched(
        _inputs,
        window_len=window_len,
        pad_id=_tokenizer.eos_token_id
    ).convert_to_tensors("pt")

    logprobs = []
    with st.spinner("Running model…"):
        batch_size = 8
        num_items = len(inputs_sliding["input_ids"])
        pbar = st.progress(0)
        for i in range(0, num_items, batch_size):
            pbar.progress(i / num_items, f"{i}/{num_items}")
            batch = {k: v[i:i + batch_size] for k, v in inputs_sliding.items()}
            logprobs.append(
                get_logprobs(
                    _model,
                    batch,
                    cache_key=(model_name, batch["input_ids"].cpu().numpy().tobytes())
                )
            )
        logprobs = torch.cat(logprobs, dim=0)
        pbar.empty()

    with st.spinner("Computing scores…"):
        logprobs = logprobs.permute(1, 0, 2)
        logprobs = F.pad(logprobs, (0, 0, 0, window_len, 0, 0), value=torch.nan)
        logprobs = logprobs.view(-1, logprobs.shape[-1])[:-window_len]
        logprobs = logprobs.view(window_len, len(input_ids) + window_len - 2, logprobs.shape[-1])

        scores = logprobs[:, torch.arange(len(input_ids[1:])), input_ids[1:]]
        scores = scores.diff(dim=0).transpose(0, 1)
        scores = scores.nan_to_num()
        scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
        scores = scores.to(torch.float16)

    return scores

scores = run_context_length_probing(
    _model=model,
    _tokenizer=tokenizer,
    _inputs=inputs,
    window_len=window_len,
    cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, input_ids)

st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(tokens=tokens, scores=scores.tolist())