File size: 12,911 Bytes
8443315
ffa03c8
8443315
 
 
f90dfb4
8443315
 
dc1d5c3
ffa03c8
8443315
 
b253e66
8443315
 
 
dc1d5c3
 
 
 
 
 
 
8443315
 
 
3102d58
8443315
 
dc1d5c3
8443315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f90dfb4
3102d58
 
 
 
f90dfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8abd6
 
 
bc6cc98
 
 
 
a7f1a72
bc6cc98
 
b253e66
dc1d5c3
 
 
 
 
 
3102d58
a114a02
3102d58
 
 
d2e3092
 
 
e2a018d
 
d2e3092
dca8e6c
 
 
d2e3092
 
dca8e6c
d2e3092
f3cb237
 
d2e3092
 
f3cb237
d2e3092
 
dca8e6c
4b314cc
f3cb237
ffa03c8
dc1d5c3
ffa03c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1d5c3
f3cb237
 
 
 
 
 
 
 
 
b253e66
b837582
dc1d5c3
b837582
 
 
8443315
d2e3092
 
dc1d5c3
 
 
d2e3092
fdbcf74
 
d2e3092
dc1d5c3
d2e3092
b837582
 
d2e3092
 
 
 
535e574
 
fe36eff
dc1d5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f962dd0
ffa03c8
 
 
 
 
 
 
 
 
 
 
 
dd5d2e0
ffa03c8
dc1d5c3
 
 
 
 
ffa03c8
 
dc1d5c3
 
 
 
 
 
 
ffa03c8
 
dc1d5c3
ffa03c8
 
dc1d5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb204b7
 
dc1d5c3
 
 
ebb68fb
dc1d5c3
 
 
ffa03c8
dc1d5c3
 
bb204b7
b6ab215
dc1d5c3
 
e5222c4
535e574
dc1d5c3
 
 
 
 
 
ffa03c8
bb204b7
dc1d5c3
 
 
 
 
 
 
 
 
 
 
 
 
535e574
 
d2e3092
 
 
dc1d5c3
535e574
f90dfb4
dc1d5c3
f90dfb4
 
 
 
 
535e574
d2e3092
535e574
e5222c4
dc1d5c3
 
 
 
b6ab215
dc1d5c3
 
 
 
bb204b7
 
 
 
f90dfb4
dc1d5c3
ffa03c8
bb204b7
8443315
dc1d5c3
8443315
a7f1a72
dc1d5c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from pathlib import Path
from typing import Any, Dict, Hashable

import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizer
from transformers import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper

root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
    "highlighted_text", path=root_dir / "highlighted_text" / "build"
)

def get_windows_batched(
    examples: BatchEncoding,
    window_len: int,
    start: int = 0,
    stride: int = 1,
    pad_id: int = 0
) -> BatchEncoding:
    return BatchEncoding({
        k: [
            t[i][j : j + window_len] + [
                pad_id if k in ["input_ids", "labels"] else 0
            ] * (j + window_len - len(t[i]))
            for i in range(len(examples["input_ids"]))
            for j in range(start, len(examples["input_ids"][i]), stride)
        ]
        for k, t in examples.items()
    })

BAD_CHAR = chr(0xfffd)

def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
    cur_ids = []
    result = []
    for idx in ids:
        cur_ids.append(idx)
        decoded = tokenizer.decode(cur_ids)
        if BAD_CHAR not in decoded:
            if strip_whitespace:
                decoded = decoded.strip()
            result.append(decoded)
            del cur_ids[:]
        else:
            result.append("")
    return result

def nll_score(logprobs, labels):
    if logprobs.shape[-1] == 1:
        return -logprobs.squeeze(-1)
    else:
        return -logprobs[:, torch.arange(len(labels)), labels]

def kl_div_score(logprobs):
    log_p = logprobs[
        torch.arange(logprobs.shape[1]).clamp(max=logprobs.shape[0] - 1),
        torch.arange(logprobs.shape[1])
    ]
    # Compute things in place as much as possible
    log_p_minus_log_q = logprobs
    del logprobs
    log_p_minus_log_q *= -1
    log_p_minus_log_q += log_p

    # Use np.exp because torch.exp is not implemented for float16
    p_np = log_p.numpy()
    del log_p
    np.exp(p_np, out=p_np)
    result = log_p_minus_log_q
    result *= torch.as_tensor(p_np)
    return result.sum(dim=-1)

compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]

if not compact_layout:
    st.title("Context length probing")
    st.markdown(
        """[📃 Paper](https://arxiv.org/abs/2212.14815) |
        [🌍 Website](https://cifkao.github.io/context-probing) |
        [🧑‍💻 Code](https://github.com/cifkao/context-probing)
        """
    )

generation_mode = st.radio("Mode", ["Standard", "Generation"], horizontal=True) == "Generation"
st.caption(
    "In standard mode, we analyze the model's predictions on the input text. "
    "In generation mode, we generate a continuation of the input text (prompt) "
    "and visualize the contributions of different contexts to each generated token."
)

model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.radio(
    "Metric", (["KL divergence"] if not generation_mode else []) + ["NLL loss"], index=0, horizontal=True
)

tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)

# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant); if using NLL, memory is not a consideration, but we want
# to limit runtime
multiplier = tokenizer.vocab_size if metric_name == "KL divergence" else 16384  # arbitrary number
window_len_options = [
    w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
    if w == 8 or w * (2 * w) * multiplier <= MAX_MEM
]
window_len = st.select_slider(
    r"Window size ($c_\text{max}$)",
    options=window_len_options,
    value=min(128, window_len_options[-1])
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (multiplier * window_len) - window_len)
max_tokens = min(max_tokens, 4096)

generate_kwargs = {}
if generation_mode:
    with st.expander("Generation options", expanded=False):
        generate_kwargs["max_new_tokens"] = st.slider(
            "Max. number of generated tokens",
            min_value=8, max_value=min(1024, max_tokens), value=min(128, max_tokens)
        )
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            generate_kwargs["temperature"] = st.number_input(
                min_value=0.01, value=0.9, step=0.05, label="`temperature`"
            )
        with col2:
            generate_kwargs["top_p"] = st.number_input(
                min_value=0., value=0.95, max_value=1., step=0.05, label="`top_p`"
            )
        with col3:
            generate_kwargs["typical_p"] = st.number_input(
                min_value=0., value=1., max_value=1., step=0.05, label="`typical_p`"
            )
        with col4:
            generate_kwargs["repetition_penalty"] = st.number_input(
                min_value=1., value=1., step=0.05, label="`repetition_penalty`"
            )

DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()

text = st.text_area(
    f"Prompt" if generation_mode else "Input text (≤\u2009{max_tokens} tokens)",
    st.session_state.get("input_text", DEFAULT_TEXT),
    key="input_text",
)

inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
label_ids = [*input_ids[1:], tokenizer.eos_token_id]
inputs["labels"] = [label_ids]
num_user_tokens = len(input_ids)

if num_user_tokens < 1:
    st.error("Please enter at least one token.", icon="🚨")
    st.stop()
if not generation_mode and num_user_tokens > max_tokens:
    st.error(
        f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
        f"or try reducing the window size.",
        icon="🚨"
    )
    st.stop()

with st.spinner("Loading model…"):
    model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)

@torch.inference_mode()
def get_logprobs(model, inputs, metric):
    logprobs = []
    batch_size = 8
    num_items = len(inputs["input_ids"])
    pbar = st.progress(0)
    for i in range(0, num_items, batch_size):
        pbar.progress(i / num_items, f"{i}/{num_items}")
        batch = {k: v[i:i + batch_size] for k, v in inputs.items()}
        batch_logprobs = model(**batch).logits.log_softmax(dim=-1).to(torch.float16)
        if metric != "KL divergence":
            batch_logprobs = torch.gather(
                batch_logprobs, dim=-1, index=batch["labels"][..., None]
            )
        logprobs.append(batch_logprobs)
    logprobs = torch.cat(logprobs, dim=0)
    pbar.empty()
    return logprobs

def get_logits_processor(temperature, top_p, typical_p, repetition_penalty) -> LogitsProcessorList:
    processor = LogitsProcessorList()
    if repetition_penalty != 1.0:
        processor.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
    if temperature != 1.0:
        processor.append(TemperatureLogitsWarper(temperature))
    if top_p < 1.0:
        processor.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
    if typical_p < 1.0:
        processor.append(TypicalLogitsWarper(mass=typical_p, min_tokens_to_keep=1))
    return processor

@torch.inference_mode()
def generate(model, inputs, metric, window_len, max_new_tokens, **kwargs):
    assert metric == "NLL loss"
    start = max(0, inputs["input_ids"].shape[1] - window_len + 1)
    inputs_window = {k: v[:, start:] for k, v in inputs.items()}
    del inputs_window["labels"]

    logits_warper = get_logits_processor(**kwargs)

    new_ids, logprobs = [], []
    eos_idx = None
    pbar = st.progress(0)
    max_steps = max_new_tokens + window_len - 1
    for i in range(max_steps):
        pbar.progress(i / max_steps, f"{i}/{max_steps}")
        inputs_window["attention_mask"] = torch.ones_like(inputs_window["input_ids"], dtype=torch.long)
        logits_window = model(**inputs_window).logits.squeeze(0)
        logprobs_window = logits_window.log_softmax(dim=-1)
        if eos_idx is None:
            probs_next = logits_warper(inputs_window["input_ids"], logits_window[[-1]]).softmax(dim=-1)
            next_token = torch.multinomial(probs_next, num_samples=1).item()
            if next_token == tokenizer.eos_token_id or i >= max_new_tokens - 1:
                eos_idx = i
        else:
            next_token = tokenizer.eos_token_id
        new_ids.append(next_token)

        inputs_window["input_ids"] = torch.cat([inputs_window["input_ids"], torch.tensor([[next_token]])], dim=1)
        if inputs_window["input_ids"].shape[1] > window_len:
            inputs_window["input_ids"] = inputs_window["input_ids"][:, 1:]
        if logprobs_window.shape[0] == window_len:
            logprobs.append(
                logprobs_window[torch.arange(window_len), inputs_window["input_ids"].squeeze(0)]
            )

        if eos_idx is not None and i - eos_idx >= window_len - 1:
            break
    pbar.empty()

    return torch.as_tensor(new_ids[:eos_idx + 1]), torch.stack(logprobs)[:, :, None]

@torch.inference_mode()
def run_context_length_probing(
    _model: GPT2LMHeadModel,
    _tokenizer: PreTrainedTokenizer,
    _inputs: Dict[str, torch.Tensor],
    window_len: int,
    metric: str,
    generation_mode: bool,
    generate_kwargs: Dict[str, Any],
    cache_key: Hashable
):
    del cache_key

    [input_ids] = _inputs["input_ids"]
    [label_ids] = _inputs["labels"]

    with st.spinner("Running model…"):
        if generation_mode:
            new_ids, logprobs = generate(
                model=_model,
                inputs=_inputs.convert_to_tensors("pt"), 
                metric=metric,
                window_len=window_len,
                **generate_kwargs
            )
            output_ids = [*input_ids, *new_ids]
            window_len = logprobs.shape[1]
        else:
            window_len = min(window_len, len(input_ids))
            inputs_sliding = get_windows_batched(
                _inputs,
                window_len=window_len,
                start=0,
                pad_id=_tokenizer.eos_token_id
            ).convert_to_tensors("pt")
            logprobs = get_logprobs(model=model, inputs=inputs_sliding, metric=metric)
            output_ids = [*input_ids, label_ids[-1]]
        num_tgt_tokens = logprobs.shape[0]

    with st.spinner("Computing scores…"):
        logprobs = logprobs.permute(1, 0, 2)
        logprobs = F.pad(logprobs, (0, 0, 0, window_len, 0, 0), value=torch.nan)
        logprobs = logprobs.view(-1, logprobs.shape[-1])[:-window_len]
        logprobs = logprobs.view(window_len, num_tgt_tokens + window_len - 1, logprobs.shape[-1])

        if metric == "NLL loss":
            scores = nll_score(logprobs=logprobs, labels=label_ids)
        elif metric == "KL divergence":
            scores = kl_div_score(logprobs)
        del logprobs  # possibly destroyed by the score computation to save memory

        scores = (-scores).diff(dim=0).transpose(0, 1)
        scores = scores.nan_to_num()
        scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
        scores = scores.to(torch.float16)

        if generation_mode:
            scores = F.pad(scores, (0, 0, max(0, len(input_ids) - window_len + 1), 0), value=0.)

    return output_ids, scores

if not generation_mode:
    run_context_length_probing = st.cache_data(run_context_length_probing, show_spinner=False)

output_ids, scores = run_context_length_probing(
    _model=model,
    _tokenizer=tokenizer,
    _inputs=inputs,
    window_len=window_len,
    metric=metric_name,
    generation_mode=generation_mode,
    generate_kwargs=generate_kwargs,
    cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, output_ids)

st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(
    tokens=tokens,
    scores=scores.tolist(),
    prefix_len=len(input_ids) if generation_mode else 0
)