Spaces:
Running
Running
File size: 12,911 Bytes
8443315 ffa03c8 8443315 f90dfb4 8443315 dc1d5c3 ffa03c8 8443315 b253e66 8443315 dc1d5c3 8443315 3102d58 8443315 dc1d5c3 8443315 f90dfb4 3102d58 f90dfb4 af8abd6 bc6cc98 a7f1a72 bc6cc98 b253e66 dc1d5c3 3102d58 a114a02 3102d58 d2e3092 e2a018d d2e3092 dca8e6c d2e3092 dca8e6c d2e3092 f3cb237 d2e3092 f3cb237 d2e3092 dca8e6c 4b314cc f3cb237 ffa03c8 dc1d5c3 ffa03c8 dc1d5c3 f3cb237 b253e66 b837582 dc1d5c3 b837582 8443315 d2e3092 dc1d5c3 d2e3092 fdbcf74 d2e3092 dc1d5c3 d2e3092 b837582 d2e3092 535e574 fe36eff dc1d5c3 f962dd0 ffa03c8 dd5d2e0 ffa03c8 dc1d5c3 ffa03c8 dc1d5c3 ffa03c8 dc1d5c3 ffa03c8 dc1d5c3 bb204b7 dc1d5c3 ebb68fb dc1d5c3 ffa03c8 dc1d5c3 bb204b7 b6ab215 dc1d5c3 e5222c4 535e574 dc1d5c3 ffa03c8 bb204b7 dc1d5c3 535e574 d2e3092 dc1d5c3 535e574 f90dfb4 dc1d5c3 f90dfb4 535e574 d2e3092 535e574 e5222c4 dc1d5c3 b6ab215 dc1d5c3 bb204b7 f90dfb4 dc1d5c3 ffa03c8 bb204b7 8443315 dc1d5c3 8443315 a7f1a72 dc1d5c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from pathlib import Path
from typing import Any, Dict, Hashable
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizer
from transformers import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
def get_windows_batched(
examples: BatchEncoding,
window_len: int,
start: int = 0,
stride: int = 1,
pad_id: int = 0
) -> BatchEncoding:
return BatchEncoding({
k: [
t[i][j : j + window_len] + [
pad_id if k in ["input_ids", "labels"] else 0
] * (j + window_len - len(t[i]))
for i in range(len(examples["input_ids"]))
for j in range(start, len(examples["input_ids"][i]), stride)
]
for k, t in examples.items()
})
BAD_CHAR = chr(0xfffd)
def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
cur_ids = []
result = []
for idx in ids:
cur_ids.append(idx)
decoded = tokenizer.decode(cur_ids)
if BAD_CHAR not in decoded:
if strip_whitespace:
decoded = decoded.strip()
result.append(decoded)
del cur_ids[:]
else:
result.append("")
return result
def nll_score(logprobs, labels):
if logprobs.shape[-1] == 1:
return -logprobs.squeeze(-1)
else:
return -logprobs[:, torch.arange(len(labels)), labels]
def kl_div_score(logprobs):
log_p = logprobs[
torch.arange(logprobs.shape[1]).clamp(max=logprobs.shape[0] - 1),
torch.arange(logprobs.shape[1])
]
# Compute things in place as much as possible
log_p_minus_log_q = logprobs
del logprobs
log_p_minus_log_q *= -1
log_p_minus_log_q += log_p
# Use np.exp because torch.exp is not implemented for float16
p_np = log_p.numpy()
del log_p
np.exp(p_np, out=p_np)
result = log_p_minus_log_q
result *= torch.as_tensor(p_np)
return result.sum(dim=-1)
compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]
if not compact_layout:
st.title("Context length probing")
st.markdown(
"""[📃 Paper](https://arxiv.org/abs/2212.14815) |
[🌍 Website](https://cifkao.github.io/context-probing) |
[🧑💻 Code](https://github.com/cifkao/context-probing)
"""
)
generation_mode = st.radio("Mode", ["Standard", "Generation"], horizontal=True) == "Generation"
st.caption(
"In standard mode, we analyze the model's predictions on the input text. "
"In generation mode, we generate a continuation of the input text (prompt) "
"and visualize the contributions of different contexts to each generated token."
)
model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.radio(
"Metric", (["KL divergence"] if not generation_mode else []) + ["NLL loss"], index=0, horizontal=True
)
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant); if using NLL, memory is not a consideration, but we want
# to limit runtime
multiplier = tokenizer.vocab_size if metric_name == "KL divergence" else 16384 # arbitrary number
window_len_options = [
w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
if w == 8 or w * (2 * w) * multiplier <= MAX_MEM
]
window_len = st.select_slider(
r"Window size ($c_\text{max}$)",
options=window_len_options,
value=min(128, window_len_options[-1])
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (multiplier * window_len) - window_len)
max_tokens = min(max_tokens, 4096)
generate_kwargs = {}
if generation_mode:
with st.expander("Generation options", expanded=False):
generate_kwargs["max_new_tokens"] = st.slider(
"Max. number of generated tokens",
min_value=8, max_value=min(1024, max_tokens), value=min(128, max_tokens)
)
col1, col2, col3, col4 = st.columns(4)
with col1:
generate_kwargs["temperature"] = st.number_input(
min_value=0.01, value=0.9, step=0.05, label="`temperature`"
)
with col2:
generate_kwargs["top_p"] = st.number_input(
min_value=0., value=0.95, max_value=1., step=0.05, label="`top_p`"
)
with col3:
generate_kwargs["typical_p"] = st.number_input(
min_value=0., value=1., max_value=1., step=0.05, label="`typical_p`"
)
with col4:
generate_kwargs["repetition_penalty"] = st.number_input(
min_value=1., value=1., step=0.05, label="`repetition_penalty`"
)
DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()
text = st.text_area(
f"Prompt" if generation_mode else "Input text (≤\u2009{max_tokens} tokens)",
st.session_state.get("input_text", DEFAULT_TEXT),
key="input_text",
)
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
label_ids = [*input_ids[1:], tokenizer.eos_token_id]
inputs["labels"] = [label_ids]
num_user_tokens = len(input_ids)
if num_user_tokens < 1:
st.error("Please enter at least one token.", icon="🚨")
st.stop()
if not generation_mode and num_user_tokens > max_tokens:
st.error(
f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
f"or try reducing the window size.",
icon="🚨"
)
st.stop()
with st.spinner("Loading model…"):
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
@torch.inference_mode()
def get_logprobs(model, inputs, metric):
logprobs = []
batch_size = 8
num_items = len(inputs["input_ids"])
pbar = st.progress(0)
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items, f"{i}/{num_items}")
batch = {k: v[i:i + batch_size] for k, v in inputs.items()}
batch_logprobs = model(**batch).logits.log_softmax(dim=-1).to(torch.float16)
if metric != "KL divergence":
batch_logprobs = torch.gather(
batch_logprobs, dim=-1, index=batch["labels"][..., None]
)
logprobs.append(batch_logprobs)
logprobs = torch.cat(logprobs, dim=0)
pbar.empty()
return logprobs
def get_logits_processor(temperature, top_p, typical_p, repetition_penalty) -> LogitsProcessorList:
processor = LogitsProcessorList()
if repetition_penalty != 1.0:
processor.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
if temperature != 1.0:
processor.append(TemperatureLogitsWarper(temperature))
if top_p < 1.0:
processor.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
if typical_p < 1.0:
processor.append(TypicalLogitsWarper(mass=typical_p, min_tokens_to_keep=1))
return processor
@torch.inference_mode()
def generate(model, inputs, metric, window_len, max_new_tokens, **kwargs):
assert metric == "NLL loss"
start = max(0, inputs["input_ids"].shape[1] - window_len + 1)
inputs_window = {k: v[:, start:] for k, v in inputs.items()}
del inputs_window["labels"]
logits_warper = get_logits_processor(**kwargs)
new_ids, logprobs = [], []
eos_idx = None
pbar = st.progress(0)
max_steps = max_new_tokens + window_len - 1
for i in range(max_steps):
pbar.progress(i / max_steps, f"{i}/{max_steps}")
inputs_window["attention_mask"] = torch.ones_like(inputs_window["input_ids"], dtype=torch.long)
logits_window = model(**inputs_window).logits.squeeze(0)
logprobs_window = logits_window.log_softmax(dim=-1)
if eos_idx is None:
probs_next = logits_warper(inputs_window["input_ids"], logits_window[[-1]]).softmax(dim=-1)
next_token = torch.multinomial(probs_next, num_samples=1).item()
if next_token == tokenizer.eos_token_id or i >= max_new_tokens - 1:
eos_idx = i
else:
next_token = tokenizer.eos_token_id
new_ids.append(next_token)
inputs_window["input_ids"] = torch.cat([inputs_window["input_ids"], torch.tensor([[next_token]])], dim=1)
if inputs_window["input_ids"].shape[1] > window_len:
inputs_window["input_ids"] = inputs_window["input_ids"][:, 1:]
if logprobs_window.shape[0] == window_len:
logprobs.append(
logprobs_window[torch.arange(window_len), inputs_window["input_ids"].squeeze(0)]
)
if eos_idx is not None and i - eos_idx >= window_len - 1:
break
pbar.empty()
return torch.as_tensor(new_ids[:eos_idx + 1]), torch.stack(logprobs)[:, :, None]
@torch.inference_mode()
def run_context_length_probing(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
_inputs: Dict[str, torch.Tensor],
window_len: int,
metric: str,
generation_mode: bool,
generate_kwargs: Dict[str, Any],
cache_key: Hashable
):
del cache_key
[input_ids] = _inputs["input_ids"]
[label_ids] = _inputs["labels"]
with st.spinner("Running model…"):
if generation_mode:
new_ids, logprobs = generate(
model=_model,
inputs=_inputs.convert_to_tensors("pt"),
metric=metric,
window_len=window_len,
**generate_kwargs
)
output_ids = [*input_ids, *new_ids]
window_len = logprobs.shape[1]
else:
window_len = min(window_len, len(input_ids))
inputs_sliding = get_windows_batched(
_inputs,
window_len=window_len,
start=0,
pad_id=_tokenizer.eos_token_id
).convert_to_tensors("pt")
logprobs = get_logprobs(model=model, inputs=inputs_sliding, metric=metric)
output_ids = [*input_ids, label_ids[-1]]
num_tgt_tokens = logprobs.shape[0]
with st.spinner("Computing scores…"):
logprobs = logprobs.permute(1, 0, 2)
logprobs = F.pad(logprobs, (0, 0, 0, window_len, 0, 0), value=torch.nan)
logprobs = logprobs.view(-1, logprobs.shape[-1])[:-window_len]
logprobs = logprobs.view(window_len, num_tgt_tokens + window_len - 1, logprobs.shape[-1])
if metric == "NLL loss":
scores = nll_score(logprobs=logprobs, labels=label_ids)
elif metric == "KL divergence":
scores = kl_div_score(logprobs)
del logprobs # possibly destroyed by the score computation to save memory
scores = (-scores).diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
scores = scores.to(torch.float16)
if generation_mode:
scores = F.pad(scores, (0, 0, max(0, len(input_ids) - window_len + 1), 0), value=0.)
return output_ids, scores
if not generation_mode:
run_context_length_probing = st.cache_data(run_context_length_probing, show_spinner=False)
output_ids, scores = run_context_length_probing(
_model=model,
_tokenizer=tokenizer,
_inputs=inputs,
window_len=window_len,
metric=metric_name,
generation_mode=generation_mode,
generate_kwargs=generate_kwargs,
cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, output_ids)
st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(
tokens=tokens,
scores=scores.tolist(),
prefix_len=len(input_ids) if generation_mode else 0
)
|