context-probing / app.py
cifkao's picture
More efficient NLL implementation
3102d58
raw
history blame
8.2 kB
from enum import Enum
from pathlib import Path
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
def get_windows_batched(examples: BatchEncoding, window_len: int, stride: int = 1, pad_id: int = 0) -> BatchEncoding:
return BatchEncoding({
k: [
t[i][j : j + window_len] + [
pad_id if k in ["input_ids", "labels"] else 0
] * (j + window_len - len(t[i]))
for i in range(len(examples["input_ids"]))
for j in range(0, len(examples["input_ids"][i]) - 1, stride)
]
for k, t in examples.items()
})
BAD_CHAR = chr(0xfffd)
def ids_to_readable_tokens(tokenizer, ids, strip_whitespace=False):
cur_ids = []
result = []
for idx in ids:
cur_ids.append(idx)
decoded = tokenizer.decode(cur_ids)
if BAD_CHAR not in decoded:
if strip_whitespace:
decoded = decoded.strip()
result.append(decoded)
del cur_ids[:]
else:
result.append("")
return result
def nll_score(logprobs, labels):
if logprobs.shape[-1] == 1:
return -logprobs.squeeze(-1)
else:
return -logprobs[:, torch.arange(len(labels)), labels]
def kl_div_score(logprobs):
log_p = logprobs[
torch.arange(logprobs.shape[1]).clamp(max=logprobs.shape[0] - 1),
torch.arange(logprobs.shape[1])
]
# Compute things in place as much as possible
log_p_minus_log_q = logprobs
del logprobs
log_p_minus_log_q *= -1
log_p_minus_log_q += log_p
# Use np.exp because torch.exp is not implemented for float16
p_np = log_p.numpy()
del log_p
np.exp(p_np, out=p_np)
result = log_p_minus_log_q
result *= torch.as_tensor(p_np)
return result.sum(dim=-1)
compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]
if not compact_layout:
st.title("Context length probing")
st.markdown(
"""[📃 Paper](https://arxiv.org/abs/2212.14815) |
[🌍 Website](https://cifkao.github.io/context-probing) |
[🧑‍💻 Code](https://github.com/cifkao/context-probing)
"""
)
generation_mode = False
# st.radio("Mode", ["Standard", "Generation"], horizontal=True) == "Generation"
# st.caption(
# "In standard mode, we analyze the model's predictions on the input text. "
# "In generation mode, we generate a continuation of the input text "
# "and visualize the contributions of different contexts to each generated token."
# )
model_name = st.selectbox("Model", ["distilgpt2", "gpt2", "EleutherAI/gpt-neo-125m"])
metric_name = st.radio(
"Metric", (["KL divergence"] if not generation_mode else []) + ["NLL loss"], index=0, horizontal=True
)
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant)
logprobs_dim = tokenizer.vocab_size if metric_name == "KL divergence" else 1
window_len_options = [
w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
if w == 8 or w * (2 * w) * logprobs_dim <= MAX_MEM
]
window_len = st.select_slider(
r"Window size ($c_\text{max}$)",
options=window_len_options,
value=min(128, window_len_options[-1])
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (logprobs_dim * window_len) - window_len)
max_tokens = min(max_tokens, 2048)
DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()
text = st.text_area(
f"Input text (≤\u2009{max_tokens} tokens)",
st.session_state.get("input_text", DEFAULT_TEXT),
key="input_text",
)
if tokenizer.eos_token:
text += tokenizer.eos_token
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
inputs["labels"] = [[*input_ids[1:], tokenizer.eos_token_id]]
num_user_tokens = len(input_ids) - (1 if tokenizer.eos_token else 0)
if num_user_tokens < 1:
st.error("Please enter at least one token.", icon="🚨")
st.stop()
if num_user_tokens > max_tokens:
st.error(
f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
f"or try reducing the window size.",
icon="🚨"
)
st.stop()
with st.spinner("Loading model…"):
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
window_len = min(window_len, len(input_ids))
@st.cache_data(show_spinner=False)
@torch.inference_mode()
def get_logprobs(_model, _inputs, cache_key):
del cache_key
return _model(**_inputs).logits.log_softmax(dim=-1).to(torch.float16)
@st.cache_data(show_spinner=False)
@torch.inference_mode()
def run_context_length_probing(_model, _tokenizer, _inputs, window_len, metric, cache_key):
del cache_key
inputs_sliding = get_windows_batched(
_inputs,
window_len=window_len,
pad_id=_tokenizer.eos_token_id
).convert_to_tensors("pt")
logprobs = []
with st.spinner("Running model…"):
batch_size = 8
num_items = len(inputs_sliding["input_ids"])
pbar = st.progress(0)
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items, f"{i}/{num_items}")
batch = {k: v[i:i + batch_size] for k, v in inputs_sliding.items()}
batch_logprobs = get_logprobs(
_model,
batch,
cache_key=(model_name, batch["input_ids"].cpu().numpy().tobytes())
)
batch_labels = batch["labels"]
if metric != "KL divergence":
batch_logprobs = torch.gather(
batch_logprobs, dim=-1, index=batch_labels[..., None]
)
logprobs.append(batch_logprobs)
logprobs = torch.cat(logprobs, dim=0)
pbar.empty()
with st.spinner("Computing scores…"):
logprobs = logprobs.permute(1, 0, 2)
logprobs = F.pad(logprobs, (0, 0, 0, window_len, 0, 0), value=torch.nan)
logprobs = logprobs.view(-1, logprobs.shape[-1])[:-window_len]
logprobs = logprobs.view(window_len, len(input_ids) + window_len - 2, logprobs.shape[-1])
if metric == "NLL loss":
scores = nll_score(logprobs=logprobs, labels=input_ids[1:])
elif metric == "KL divergence":
scores = kl_div_score(logprobs)
del logprobs # possibly destroyed by the score computation to save memory
scores = (-scores).diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
scores = scores.to(torch.float16)
return scores
scores = run_context_length_probing(
_model=model,
_tokenizer=tokenizer,
_inputs=inputs,
window_len=window_len,
metric=metric_name,
cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, input_ids)
st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(tokens=tokens, scores=scores.tolist())