Spaces:
Running
Running
File size: 27,231 Bytes
9244e51 12f7b19 9244e51 003a57c 5043916 0b4a056 dcb1138 dd3f9d3 8fa0841 dcb1138 9244e51 e490d6f 9244e51 8300e39 9244e51 dcb1138 f0b0540 0435f91 db01d0c e7d1e40 9244e51 8300e39 e490d6f dcb1138 0b4a056 dcb1138 0b4a056 dcb1138 e490d6f dcb1138 9244e51 72ff7a6 dcb1138 e490d6f 9244e51 12f7b19 0bf2ba9 3de9fa9 8300e39 948b6ac 7480e87 8300e39 948b6ac c7bf0c8 948b6ac 8300e39 9244e51 dcb1138 e490d6f dcb1138 e490d6f dcb1138 8fa0841 99c56f7 e490d6f 9244e51 377f8fb 6b98e01 377f8fb 6b98e01 0bf2ba9 6b98e01 377f8fb 8ecf633 377f8fb 230457e 377f8fb 0bf2ba9 377f8fb ee8868b 377f8fb ee8868b 377f8fb ee8868b 377f8fb ee8868b 377f8fb 8b0b992 377f8fb 9244e51 c8d4d3d 9244e51 c8d4d3d 9244e51 bbecd0b 9244e51 8300e39 9244e51 2f6f262 884af31 8300e39 f0b0540 0435f91 e490d6f 0435f91 8300e39 9244e51 8300e39 f0b0540 9244e51 8300e39 9244e51 8300e39 0bf2ba9 9244e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import gradio as gr
from PIL import Image
import base64
from io import BytesIO
import torch
#from diffusers import FluxControlNetModel
#from diffusers.pipelines import FluxControlNetPipeline
from diffusers import DiffusionPipeline
#from diffusers import FluxControlNetPipeline
#from diffusers import FluxControlNetModel #, FluxMultiControlNetModel
"""
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
pipe.load_lora_weights("enhanceaiteam/Flux-Uncensored-V2")
prompt = "nsfw nude woman on beach, sunset, long flowing hair, sensual pose"
image = pipe(prompt).images[0]
"""
#import torch.nn.functional as F
#import torchvision
#import torchvision.transforms as T
#import cv2
from diffusers import StableDiffusionInpaintPipeline
import numpy as np
import os
import shutil
from gradio_client import Client, handle_file
# Load the model once globally to avoid repeated loading
"""
def load_inpainting_model():
# Load pipeline
#model_path = "urpmv13Inpainting.safetensors"
model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
#model_path = "pornmasterFantasy_v4-inpainting.safetensors"
#model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors"
device = "cpu" # Explicitly use CPU
pipe = StableDiffusionInpaintPipeline.from_single_file(
model_path,
torch_dtype=torch.float32, # Use float32 for CPU
safety_checker=None
).to(device)
return pipe
"""
"""
# Load the model once globally to avoid repeated loading
def load_upscaling_model():
# Load pipeline
device = "cpu" # Explicitly use CPU
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.float32
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.float32
).to(device)
pipe = DiffusionPipeline.from_pretrained("jasperai/Flux.1-dev-Controlnet-Upscaler")
return pipe
"""
# Preload the model once
#inpaint_pipeline = load_inpainting_model()
# Preload the model once
#upscale_pipeline = load_upscaling_model()
def encode_image(orig_image):
buffered = BytesIO()
orig_image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
return img_str
def resize_image(input_image, mask_image):
orig_image = mask_image.resize(input_image.size, Image.Resampling.LANCZOS)
aspect_ratio = orig_image.height / orig_image.width
old_width = orig_image.width
new_width = int(orig_image.width*1.2)
old_height = orig_image.height
new_height = int(new_width * aspect_ratio)
resized_image = orig_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left_crop = int((new_width - old_width)/2)
right_crop = new_width - int((new_width - old_width) / 2)
top_crop = int((new_height - old_height)/2)
bottom_crop = new_height - int((new_height - old_height) / 2)
cropped_image = resized_image.crop((left_crop,top_crop,right_crop,bottom_crop))
return cropped_image
# Function to resize image (simpler interpolation method for speed)
def resize_to_match(input_image, output_image):
#w, h = output_image.size
#control_image = output_image.resize((w * 4, h * 4))
"""
scaled_image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=28,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0]
).images[0]
"""
#return scaled_image
#torch_img = pil_to_torch(input_image)
#torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
#output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing
def generate_image_old(image_path, mask_path, text_prompt="undress", negative_prompt=""):
result = client.predict(
text_prompt, # str in 'parameter_10' Textbox component
negative_prompt, # str in 'Negative Prompt' Textbox component
["Fooocus V2","Fooocus Enhance","Fooocus Sharp"], # List[str] in 'Selected Styles' Checkboxgroup component
"Quality", # str in 'Performance' Radio component
'704×1408 <span style="color: grey;"> ∣ 1:2</span>', # str in 'Aspect Ratios' Radio component
1, # int | float (numeric value between 1 and 32) in 'Image Number' Slider component
"-1", # str in 'Seed' Textbox component
0, # int | float (numeric value between 0.0 and 30.0) in 'Image Sharpness' Slider component
1, # int | float (numeric value between 1.0 and 30.0) in 'Guidance Scale' Slider component
"juggernautXL_version6Rundiffusion.safetensors", # str (Option from: ['ACertainty.ckpt', 'ACertainty.safetensors', 'juggernautXL_version6Rundiffusion.safetensors']) in 'Base Model (SDXL only)' Dropdown component
"None", # str (Option from: ['None', 'ACertainty.ckpt', 'ACertainty.safetensors', 'juggernautXL_version6Rundiffusion.safetensors']) in 'Refiner (SDXL or SD 1.5)' Dropdown component
0.1, # int | float (numeric value between 0.1 and 1.0) in 'Refiner Switch At' Slider component
"None", # str (Option from: ['None', 'sdxl_lcm_lora.safetensors', 'sd_xl_offset_example-lora_1.0.safetensors']) in 'LoRA 1' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
"None", # str (Option from: ['None', 'sdxl_lcm_lora.safetensors', 'sd_xl_offset_example-lora_1.0.safetensors']) in 'LoRA 2' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
"None", # str (Option from: ['None', 'sdxl_lcm_lora.safetensors', 'sd_xl_offset_example-lora_1.0.safetensors']) in 'LoRA 3' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
"None", # str (Option from: ['None', 'sdxl_lcm_lora.safetensors', 'sd_xl_offset_example-lora_1.0.safetensors']) in 'LoRA 4' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
"None", # str (Option from: ['None', 'sdxl_lcm_lora.safetensors', 'sd_xl_offset_example-lora_1.0.safetensors']) in 'LoRA 5' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Input Image' Checkbox component
"", # str in 'parameter_85' Textbox component
"Disabled", # str in 'Upscale or Variation:' Radio component
None, # str (filepath or URL to image) in 'Drag above image to here' Image component
[], # List[str] in 'Outpaint Direction' Checkboxgroup component
image_path, # str (filepath or URL to image) in 'Drag inpaint or outpaint image to here' Image component
"", # str in 'Inpaint Additional Prompt' Textbox component
mask_path, # str (filepath or URL to image) in 'Mask Upload' Image component
image_path, # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
None, # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
None, # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
None, # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
fn_index=33
)
def generate_image(image_path, mask_path, text_prompt="undress", negative_prompt=""):
client = Client("https://fooocus-ui.emcdn.ru/")
result = client.predict(
False, # bool in 'Generate Image Grid for Each Batch' Checkbox component
text_prompt, # str in 'parameter_12' Textbox component
negative_prompt, # str in 'Negative Prompt' Textbox component
["Fooocus V2"], # List[str] in 'Selected Styles' Checkboxgroup component from: ["Fooocus V2","Fooocus Enhance","Fooocus Sharp"]
"Quality", # str in 'Performance' Radio component
'704×1408 <span style="color: grey;"> ∣ 1:2</span>', # str in 'Aspect Ratios' Radio component
1, # int | float (numeric value between 1 and 32) in 'Image Number' Slider component
"png", # str in 'Output Format' Radio component
"-1", # str in 'Seed' Textbox component
True, # bool in 'Read wildcards in order' Checkbox component
0, # int | float (numeric value between 0.0 and 30.0) in 'Image Sharpness' Slider component
1, # int | float (numeric value between 1.0 and 30.0) in 'Guidance Scale' Slider component
"juggernautXL_version8Rundiffusion.safetensors", # str (Option from: ['animaPencilXL_v500.safetensors', 'juggernautXL_v8Rundiffusion.safetensors', 'playground-v2.5-1024px-aesthetic.fp16.safetensors', 'ponyDiffusionV6XL.safetensors', 'realisticStockPhoto_v20.safetensors', 'sd_xl_base_1.0_0.9vae.safetensors', 'sd_xl_refiner_1.0_0.9vae.safetensors']) in 'Base Model (SDXL only)' Dropdown component
"None", # str (Option from: ['None', 'animaPencilXL_v500.safetensors', 'juggernautXL_v8Rundiffusion.safetensors', 'playground-v2.5-1024px-aesthetic.fp16.safetensors', 'ponyDiffusionV6XL.safetensors', 'realisticStockPhoto_v20.safetensors', 'sd_xl_base_1.0_0.9vae.safetensors', 'sd_xl_refiner_1.0_0.9vae.safetensors']) in 'Refiner (SDXL or SD 1.5)' Dropdown component
0.1, # int | float (numeric value between 0.1 and 1.0) in 'Refiner Switch At' Slider component
True, # bool in 'Enable' Checkbox component
"None", # str (Option from: ['None', 'sd_xl_offset_example-lora_1.0.safetensors', 'SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors', 'sdxl_hyper_sd_4step_lora.safetensors', 'sdxl_lcm_lora.safetensors', 'sdxl_lightning_4step_lora.safetensors']) in 'LoRA 1' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Enable' Checkbox component
"None", # str (Option from: ['None', 'sd_xl_offset_example-lora_1.0.safetensors', 'SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors', 'sdxl_hyper_sd_4step_lora.safetensors', 'sdxl_lcm_lora.safetensors', 'sdxl_lightning_4step_lora.safetensors']) in 'LoRA 2' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Enable' Checkbox component
"None", # str (Option from: ['None', 'sd_xl_offset_example-lora_1.0.safetensors', 'SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors', 'sdxl_hyper_sd_4step_lora.safetensors', 'sdxl_lcm_lora.safetensors', 'sdxl_lightning_4step_lora.safetensors']) in 'LoRA 3' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Enable' Checkbox component
"None", # str (Option from: ['None', 'sd_xl_offset_example-lora_1.0.safetensors', 'SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors', 'sdxl_hyper_sd_4step_lora.safetensors', 'sdxl_lcm_lora.safetensors', 'sdxl_lightning_4step_lora.safetensors']) in 'LoRA 4' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Enable' Checkbox component
"None", # str (Option from: ['None', 'sd_xl_offset_example-lora_1.0.safetensors', 'SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors', 'sdxl_hyper_sd_4step_lora.safetensors', 'sdxl_lcm_lora.safetensors', 'sdxl_lightning_4step_lora.safetensors']) in 'LoRA 5' Dropdown component
-2, # int | float (numeric value between -2 and 2) in 'Weight' Slider component
True, # bool in 'Input Image' Checkbox component
"-1", # str in 'parameter_212' Textbox component
"Disabled", # str in 'Upscale or Variation:' Radio component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
["Left"], # List[str] in 'Outpaint Direction' Checkboxgroup component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
"", # str in 'Inpaint Additional Prompt' Textbox component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Mask Upload' Image component
True, # bool in 'Disable Preview' Checkbox component
True, # bool in 'Disable Intermediate Results' Checkbox component
True, # bool in 'Disable seed increment' Checkbox component
False, # bool in 'Black Out NSFW' Checkbox component
0.1, # int | float (numeric value between 0.1 and 3.0) in 'Positive ADM Guidance Scaler' Slider component
0.1, # int | float (numeric value between 0.1 and 3.0) in 'Negative ADM Guidance Scaler' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'ADM Guidance End At Step' Slider component
1, # int | float (numeric value between 1.0 and 30.0) in 'CFG Mimicking from TSNR' Slider component
1, # int | float (numeric value between 1 and 12) in 'CLIP Skip' Slider component
"euler", # str (Option from: ['euler', 'euler_ancestral', 'heun', 'heunpp2', 'dpm_2', 'dpm_2_ancestral', 'lms', 'dpm_fast', 'dpm_adaptive', 'dpmpp_2s_ancestral', 'dpmpp_sde', 'dpmpp_sde_gpu', 'dpmpp_2m', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu', 'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu', 'ddpm', 'lcm', 'tcd', 'restart', 'ddim', 'uni_pc', 'uni_pc_bh2']) in 'Sampler' Dropdown component
"normal", # str (Option from: ['normal', 'karras', 'exponential', 'sgm_uniform', 'simple', 'ddim_uniform', 'lcm', 'turbo', 'align_your_steps', 'tcd', 'edm_playground_v2.5']) in 'Scheduler' Dropdown component
"Default (model)", # str (Option from: ['Default (model)', 'ponyDiffusionV6XL_vae.safetensors']) in 'VAE' Dropdown component
-1, # int | float (numeric value between -1 and 200) in 'Forced Overwrite of Sampling Step' Slider component
-1, # int | float (numeric value between -1 and 200) in 'Forced Overwrite of Refiner Switch Step' Slider component
-1, # int | float (numeric value between -1 and 2048) in 'Forced Overwrite of Generating Width' Slider component
-1, # int | float (numeric value between -1 and 2048) in 'Forced Overwrite of Generating Height' Slider component
-1, # int | float (numeric value between -1 and 1.0) in 'Forced Overwrite of Denoising Strength of "Vary"' Slider component
-1, # int | float (numeric value between -1 and 1.0) in 'Forced Overwrite of Denoising Strength of "Upscale"' Slider component
True, # bool in 'Mixing Image Prompt and Vary/Upscale' Checkbox component
True, # bool in 'Mixing Image Prompt and Inpaint' Checkbox component
True, # bool in 'Debug Preprocessors' Checkbox component
True, # bool in 'Skip Preprocessors' Checkbox component
1, # int | float (numeric value between 1 and 255) in 'Canny Low Threshold' Slider component
1, # int | float (numeric value between 1 and 255) in 'Canny High Threshold' Slider component
"joint", # str (Option from: ['joint', 'separate', 'vae']) in 'Refiner swap method' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Softness of ControlNet' Slider component
True, # bool in 'Enabled' Checkbox component
0, # int | float (numeric value between 0 and 2) in 'B1' Slider component
0, # int | float (numeric value between 0 and 2) in 'B2' Slider component
0, # int | float (numeric value between 0 and 4) in 'S1' Slider component
0, # int | float (numeric value between 0 and 4) in 'S2' Slider component
True, # bool in 'Debug Inpaint Preprocessing' Checkbox component
True, # bool in 'Disable initial latent in inpaint' Checkbox component
"None", # str (Option from: ['None', 'v1', 'v2.5', 'v2.6']) in 'Inpaint Engine' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Denoising Strength' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Respective Field' Slider component
True, # bool in 'Enable Advanced Masking Features' Checkbox component
True, # bool in 'Invert Mask When Generating' Checkbox component
-64, # int | float (numeric value between -64 and 64) in 'Mask Erode or Dilate' Slider component
True, # bool in 'Save only final enhanced image' Checkbox component
True, # bool in 'Save Metadata to Images' Checkbox component
"fooocus", # str in 'Metadata Scheme' Radio component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Image' Image component
0, # int | float (numeric value between 0.0 and 1.0) in 'Stop At' Slider component
0, # int | float (numeric value between 0.0 and 2.0) in 'Weight' Slider component
"ImagePrompt", # str in 'Type' Radio component
True, # bool in 'Debug GroundingDINO' Checkbox component
-64, # int | float (numeric value between -64 and 64) in 'GroundingDINO Box Erode or Dilate' Slider component
True, # bool in 'Debug Enhance Masks' Checkbox component
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str (filepath or URL to image) in 'Use with Enhance, skips image generation' Image component
True, # bool in 'Enhance' Checkbox component
"Disabled", # str in 'Upscale or Variation:' Radio component
"Before First Enhancement", # str in 'Order of Processing' Radio component
"Original Prompts", # str in 'Prompt' Radio component
True, # bool in 'Enable' Checkbox component
"", # str in 'Detection prompt' Textbox component
"", # str in 'Enhancement positive prompt' Textbox component
"", # str in 'Enhancement negative prompt' Textbox component
"u2net", # str (Option from: ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam']) in 'Mask generation model' Dropdown component
"full", # str (Option from: ['full', 'upper', 'lower']) in 'Cloth category' Dropdown component
"vit_b", # str (Option from: ['vit_b', 'vit_l', 'vit_h']) in 'SAM model' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Text Threshold' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Box Threshold' Slider component
0, # int | float (numeric value between 0 and 10) in 'Maximum number of detections' Slider component
True, # bool in 'Disable initial latent in inpaint' Checkbox component
"None", # str (Option from: ['None', 'v1', 'v2.5', 'v2.6']) in 'Inpaint Engine' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Denoising Strength' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Respective Field' Slider component
-64, # int | float (numeric value between -64 and 64) in 'Mask Erode or Dilate' Slider component
True, # bool in 'Invert Mask' Checkbox component
True, # bool in 'Enable' Checkbox component
"", # str in 'Detection prompt' Textbox component
"", # str in 'Enhancement positive prompt' Textbox component
"", # str in 'Enhancement negative prompt' Textbox component
"u2net", # str (Option from: ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam']) in 'Mask generation model' Dropdown component
"full", # str (Option from: ['full', 'upper', 'lower']) in 'Cloth category' Dropdown component
"vit_b", # str (Option from: ['vit_b', 'vit_l', 'vit_h']) in 'SAM model' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Text Threshold' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Box Threshold' Slider component
0, # int | float (numeric value between 0 and 10) in 'Maximum number of detections' Slider component
True, # bool in 'Disable initial latent in inpaint' Checkbox component
"None", # str (Option from: ['None', 'v1', 'v2.5', 'v2.6']) in 'Inpaint Engine' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Denoising Strength' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Respective Field' Slider component
-64, # int | float (numeric value between -64 and 64) in 'Mask Erode or Dilate' Slider component
True, # bool in 'Invert Mask' Checkbox component True, # bool in 'Enable' Checkbox component
"", # str in 'Detection prompt' Textbox component
"", # str in 'Enhancement positive prompt' Textbox component
"", # str in 'Enhancement negative prompt' Textbox component
"u2net", # str (Option from: ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam']) in 'Mask generation model' Dropdown component
"full", # str (Option from: ['full', 'upper', 'lower']) in 'Cloth category' Dropdown component
"vit_b", # str (Option from: ['vit_b', 'vit_l', 'vit_h']) in 'SAM model' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Text Threshold' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Box Threshold' Slider component
0, # int | float (numeric value between 0 and 10) in 'Maximum number of detections' Slider component
True, # bool in 'Disable initial latent in inpaint' Checkbox component
"None", # str (Option from: ['None', 'v1', 'v2.5', 'v2.6']) in 'Inpaint Engine' Dropdown component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Denoising Strength' Slider component
0, # int | float (numeric value between 0.0 and 1.0) in 'Inpaint Respective Field' Slider component
-64, # int | float (numeric value between -64 and 64) in 'Mask Erode or Dilate' Slider component
True, # bool in 'Invert Mask' Checkbox component
fn_index=67
)
print(result)
# Function to generate the mask using Florence SAM Masking API (Replicate)
def generate_mask(image_path, text_prompt="clothing"):
client_sam = Client("SkalskiP/florence-sam-masking")
mask_result = client_sam.predict(
#mode_dropdown = "open vocabulary detection + image masks",
image_input=handle_file(image_path), # Provide your image path here
text_input=text_prompt, # Use "clothing" as the prompt
api_name="/process_image"
)
print("mask_result=", mask_result)
return mask_result # This is the local path to the generated mask
# Save the generated mask
def save_mask(mask_local_path, save_path="generated_mask.png"):
try:
shutil.copy(mask_local_path, save_path)
except Exception as e:
print(f"Failed to save the mask: {e}")
# Function to perform inpainting
"""
def inpaint_image(input_image, mask_image):
prompt = "undress, naked, real skin, detailed nipples, erect nipples, detailed pussy, (detailed nipples), (detailed skin), (detailed pussy), accurate anatomy"
negative_prompt = "bad anatomy, deformed, ugly, disfigured, (extra arms), (extra legs), (extra hands), (extra feet), (extra finger)"
#IMAGE_SIZE = (1024,1024)
#initial_input_image = input_image.resize(IMAGE_SIZE)
#initial_mask_image = mask_image.resize(IMAGE_SIZE)
#blurred_mask_image = inpaint_pipeline.mask_processor.blur(initial_mask_image,blur_factor=10)
#result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, height=IMAGE_SIZE[0], width=IMAGE_SIZE[0], image=initial_input_image, mask_image=blurred_mask_image, padding_mask_crop=32)
#blurred_mask_image = inpaint_pipeline.mask_processor.blur(mask_image,blur_factor=10)
result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, image=input_image, mask_image=mask_image, padding_mask_crop=10)
inpainted_image = result.images[0]
#inpainted_image = resize_to_match(input_image, inpainted_image)
return inpainted_image
"""
# Function to process input image and mask
def process_image(input_image):
# Save the input image temporarily to process with Replicate
input_image_path = "temp_input_image.png"
input_image.save(input_image_path)
# Generate the mask using Florence SAM API
mask_local_path = generate_mask(image_path=input_image_path)
#mask_local_path1 = str(mask_local_path)#[0])
# Save the generated mask
mask_image_path = "generated_mask.png"
save_mask(mask_local_path, save_path=mask_image_path)
# Open the mask image and perform inpainting
mask_image = Image.open(mask_image_path)
result_image = resize_image(input_image, mask_image)
# Clean up temporary files
os.remove(input_image_path)
os.remove(mask_image_path)
return result_image
# Define Gradio interface using Blocks API
with gr.Blocks() as demo:
with gr.Row():
input_image = gr.Image(label="Upload Input Image", type="pil")
output_image = gr.Image(type="pil", label="Output Image")
# Button to trigger the process
with gr.Row():
btn = gr.Button("Run Inpainting")
# Function to run when button is clicked
btn.click(fn=process_image, inputs=[input_image], outputs=output_image)
# Launch the Gradio app
demo.launch(share=True)
|