Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import torch | |
from diffusers import StableDiffusionInpaintPipeline | |
import numpy as np | |
import cv2 | |
import os | |
import shutil | |
from gradio_client import Client, handle_file | |
# Load the model once globally to avoid repeated loading | |
def load_inpainting_model(): | |
model_path = "uberRealisticPornMerge_v23Inpainting.safetensors" | |
device = "cpu" # Explicitly use CPU | |
pipe = StableDiffusionInpaintPipeline.from_single_file( | |
model_path, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
safety_checker=None | |
).to(device) | |
return pipe | |
# Preload the model once | |
inpaint_pipeline = load_inpainting_model() | |
# Function to resize image (simpler interpolation method for speed) | |
def resize_to_match(input_image, output_image): | |
return output_image.resize(input_image.size, Image.BILINEAR) # Use BILINEAR for faster resizing | |
# Function to generate the mask using Florence SAM Masking API (Replicate) | |
def generate_mask(image_path, text_prompt="clothing"): | |
client_sam = Client("SkalskiP/florence-sam-masking") | |
mask_result = client_sam.predict( | |
image_input=handle_file(image_path), # Provide your image path here | |
text_input=text_prompt, # Use "clothing" as the prompt | |
api_name="/process_image" | |
) | |
return mask_result # This is the local path to the generated mask | |
# Save the generated mask | |
def save_mask(mask_local_path, save_path="generated_mask.png"): | |
try: | |
shutil.copy(mask_local_path, save_path) | |
except Exception as e: | |
print(f"Failed to save the mask: {e}") | |
# Function to perform inpainting | |
def inpaint_image(input_image, mask_image): | |
prompt = "undress, naked" | |
result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image) | |
inpainted_image = result.images[0] | |
inpainted_image = resize_to_match(input_image, inpainted_image) | |
return inpainted_image | |
# Function to process input image and mask | |
def process_image(input_image): | |
# Save the input image temporarily to process with Replicate | |
input_image_path = "temp_input_image.png" | |
input_image.save(input_image_path) | |
# Generate the mask using Florence SAM API | |
mask_local_path = generate_mask(image_path=input_image_path) | |
# Save the generated mask | |
mask_image_path = "generated_mask.png" | |
save_mask(mask_local_path, save_path=mask_image_path) | |
# Open the mask image and perform inpainting | |
mask_image = Image.open(mask_image_path) | |
result_image = inpaint_image(input_image, mask_image) | |
# Clean up temporary files | |
os.remove(input_image_path) | |
os.remove(mask_image_path) | |
return result_image | |
# Define Gradio interface using Blocks API | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
input_image = gr.Image(label="Upload Input Image", type="pil") | |
output_image = gr.Image(type="pil", label="Output Image") | |
# Button to trigger the process | |
with gr.Row(): | |
btn = gr.Button("Run Inpainting") | |
# Function to run when button is clicked | |
btn.click(fn=process_image, inputs=[input_image], outputs=output_image) | |
# Launch the Gradio app | |
demo.launch(share=True) | |