import gradio as gr from PIL import Image import torch #from diffusers import FluxControlNetModel #from diffusers.pipelines import FluxControlNetPipeline from diffusers import FluxControlNetPipeline from diffusers import FluxControlNetModel #, FluxMultiControlNetModel """ from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev") pipe.load_lora_weights("enhanceaiteam/Flux-Uncensored-V2") prompt = "nsfw nude woman on beach, sunset, long flowing hair, sensual pose" image = pipe(prompt).images[0] """ #import torch.nn.functional as F #import torchvision #import torchvision.transforms as T #import cv2 from diffusers import StableDiffusionInpaintPipeline import numpy as np import os import shutil from gradio_client import Client, handle_file # Load the model once globally to avoid repeated loading def load_inpainting_model(): # Load pipeline model_path = "uberRealisticPornMerge_urpmv13Inpainting.safetensors" #model_path = "uberRealisticPornMerge_v23Inpainting.safetensors" #model_path = "pornmasterFantasy_v4-inpainting.safetensors" #model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors" device = "cpu" # Explicitly use CPU pipe = StableDiffusionInpaintPipeline.from_single_file( model_path, torch_dtype=torch.float32, # Use float32 for CPU safety_checker=None ).to(device) return pipe # Load the model once globally to avoid repeated loading def load_upscaling_model(): # Load pipeline device = "cpu" # Explicitly use CPU controlnet = FluxControlNetModel.from_pretrained( "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.float32 ) pipe = FluxControlNetPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.float32 ).to(device) return pipe # Preload the model once inpaint_pipeline = load_inpainting_model() # Preload the model once upscale_pipeline = load_upscaling_model() # Function to resize image (simpler interpolation method for speed) def resize_to_match(input_image, output_image): w, h = output_image.size control_image = output_image.resize((w * 4, h * 4)) scaled_image = pipe( prompt="", control_image=control_image, controlnet_conditioning_scale=0.6, num_inference_steps=28, guidance_scale=3.5, height=control_image.size[1], width=control_image.size[0] ).images[0] return scaled_image #torch_img = pil_to_torch(input_image) #torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0) #output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None) #return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing # Function to generate the mask using Florence SAM Masking API (Replicate) def generate_mask(image_path, text_prompt="clothing"): client_sam = Client("SkalskiP/florence-sam-masking") mask_result = client_sam.predict( image_input=handle_file(image_path), # Provide your image path here text_input=text_prompt, # Use "clothing" as the prompt api_name="/process_image" ) return mask_result # This is the local path to the generated mask # Save the generated mask def save_mask(mask_local_path, save_path="generated_mask.png"): try: shutil.copy(mask_local_path, save_path) except Exception as e: print(f"Failed to save the mask: {e}") # Function to perform inpainting def inpaint_image(input_image, mask_image): prompt = "undress, naked" result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image) inpainted_image = result.images[0] inpainted_image = resize_to_match(input_image, inpainted_image) return inpainted_image # Function to process input image and mask def process_image(input_image): # Save the input image temporarily to process with Replicate input_image_path = "temp_input_image.png" input_image.save(input_image_path) # Generate the mask using Florence SAM API mask_local_path = generate_mask(image_path=input_image_path) # Save the generated mask mask_image_path = "generated_mask.png" save_mask(mask_local_path, save_path=mask_image_path) # Open the mask image and perform inpainting mask_image = Image.open(mask_image_path) result_image = inpaint_image(input_image, mask_image) # Clean up temporary files os.remove(input_image_path) os.remove(mask_image_path) return result_image # Define Gradio interface using Blocks API with gr.Blocks() as demo: with gr.Row(): input_image = gr.Image(label="Upload Input Image", type="pil") output_image = gr.Image(type="pil", label="Output Image") # Button to trigger the process with gr.Row(): btn = gr.Button("Run Inpainting") # Function to run when button is clicked btn.click(fn=process_image, inputs=[input_image], outputs=output_image) # Launch the Gradio app demo.launch(share=True)