Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class ResBlock(nn.Module): | |
"""Linear block with residuals""" | |
def __init__(self, ch): | |
super().__init__() | |
self.join = nn.ReLU() | |
self.long = nn.Sequential( | |
nn.Linear(ch, ch), | |
nn.LeakyReLU(0.1), | |
nn.Linear(ch, ch), | |
nn.LeakyReLU(0.1), | |
nn.Linear(ch, ch), | |
) | |
def forward(self, x): | |
return self.join(self.long(x) + x) | |
class PredictorModel(nn.Module): | |
"""Main predictor class""" | |
def __init__(self, features=768, outputs=1, hidden=1024): | |
super().__init__() | |
self.features = features | |
self.outputs = outputs | |
self.hidden = hidden | |
self.up = nn.Sequential( | |
nn.Linear(self.features, self.hidden), | |
ResBlock(ch=self.hidden), | |
) | |
self.down = nn.Sequential( | |
nn.Linear(self.hidden, 128), | |
nn.Linear(128, 64), | |
nn.Dropout(0.1), | |
nn.LeakyReLU(), | |
nn.Linear(64, 32), | |
nn.Linear(32, self.outputs), | |
) | |
self.out = nn.Softmax(dim=1) if self.outputs > 1 else nn.Tanh() | |
def forward(self, x): | |
y = self.up(x) | |
z = self.down(y) | |
if self.outputs > 1: | |
return self.out(z) | |
else: | |
return (self.out(z)+1.0)/2.0 | |