City
Sync with github
bb0a0a7
raw
history blame
1.13 kB
import torch
import torch.nn as nn
class ResBlock(nn.Module):
"""Linear block with residuals"""
def __init__(self, ch):
super().__init__()
self.join = nn.ReLU()
self.long = nn.Sequential(
nn.Linear(ch, ch),
nn.LeakyReLU(0.1),
nn.Linear(ch, ch),
nn.LeakyReLU(0.1),
nn.Linear(ch, ch),
)
def forward(self, x):
return self.join(self.long(x) + x)
class PredictorModel(nn.Module):
"""Main predictor class"""
def __init__(self, features=768, outputs=1, hidden=1024):
super().__init__()
self.features = features
self.outputs = outputs
self.hidden = hidden
self.up = nn.Sequential(
nn.Linear(self.features, self.hidden),
ResBlock(ch=self.hidden),
)
self.down = nn.Sequential(
nn.Linear(self.hidden, 128),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.LeakyReLU(),
nn.Linear(64, 32),
nn.Linear(32, self.outputs),
)
self.out = nn.Softmax(dim=1) if self.outputs > 1 else nn.Tanh()
def forward(self, x):
y = self.up(x)
z = self.down(y)
if self.outputs > 1:
return self.out(z)
else:
return (self.out(z)+1.0)/2.0