City commited on
Commit
f7c012d
·
1 Parent(s): ea0c985

Add compression detection model

Browse files
Files changed (2) hide show
  1. demo_class_gradio.py +1 -0
  2. inference.py +5 -4
demo_class_gradio.py CHANGED
@@ -8,6 +8,7 @@ TOKEN = os.environ.get("HFS_TOKEN")
8
  HFREPO = "City96/AnimeClassifiers"
9
  MODELS = [
10
  "CCAnime-ChromaticAberration-v1.16",
 
11
  ]
12
  article = """\
13
  # About
 
8
  HFREPO = "City96/AnimeClassifiers"
9
  MODELS = [
10
  "CCAnime-ChromaticAberration-v1.16",
11
+ "CCAnime-Compression-v1.5",
12
  ]
13
  article = """\
14
  # About
inference.py CHANGED
@@ -15,7 +15,7 @@ class CityAestheticsPipeline:
15
  Resulting object can be called directly with a PIL image as the input
16
  Returns a single float value with the predicted score [0.0;1.0].
17
  """
18
- clip_ver = "openai/clip-vit-large-patch14"
19
  def __init__(self, model_path, device="cpu", clip_dtype=torch.float32):
20
  self.device = device
21
  self.clip_dtype = clip_dtype
@@ -90,7 +90,7 @@ class CityClassifierPipeline:
90
  Resulting object can be called directly with a PIL image as the input
91
  Returns a single float value with the predicted score [0.0;1.0].
92
  """
93
- clip_ver = "openai/clip-vit-large-patch14"
94
  def __init__(self, model_path, config_path=None, device="cpu", clip_dtype=torch.float32):
95
  self.device = device
96
  self.clip_dtype = clip_dtype
@@ -134,10 +134,10 @@ class CityClassifierPipeline:
134
  return [pred[:, x] for x in range(pred.shape[1])] # split
135
 
136
  def get_clip_emb(self, raw, tiling=False):
137
- if tiling and min(raw.size)>512:
138
  if max(raw.size)>1536:
139
  raw = TF.functional.resize(raw, 1536)
140
- raw = TF.functional.five_crop(raw, 512)
141
  img = self.proc(
142
  images = raw,
143
  return_tensors = "pt"
@@ -148,6 +148,7 @@ class CityClassifierPipeline:
148
 
149
  def _init_clip(self):
150
  self.proc = CLIPImageProcessor.from_pretrained(self.clip_ver)
 
151
  self.clip = CLIPVisionModelWithProjection.from_pretrained(
152
  self.clip_ver,
153
  device_map = self.device,
 
15
  Resulting object can be called directly with a PIL image as the input
16
  Returns a single float value with the predicted score [0.0;1.0].
17
  """
18
+ clip_ver = "openai/clip-vit-large-patch14-336"
19
  def __init__(self, model_path, device="cpu", clip_dtype=torch.float32):
20
  self.device = device
21
  self.clip_dtype = clip_dtype
 
90
  Resulting object can be called directly with a PIL image as the input
91
  Returns a single float value with the predicted score [0.0;1.0].
92
  """
93
+ clip_ver = "openai/clip-vit-large-patch14-336"
94
  def __init__(self, model_path, config_path=None, device="cpu", clip_dtype=torch.float32):
95
  self.device = device
96
  self.clip_dtype = clip_dtype
 
134
  return [pred[:, x] for x in range(pred.shape[1])] # split
135
 
136
  def get_clip_emb(self, raw, tiling=False):
137
+ if tiling and min(raw.size) > self.size*2:
138
  if max(raw.size)>1536:
139
  raw = TF.functional.resize(raw, 1536)
140
+ raw = TF.functional.five_crop(raw, self.size*2)
141
  img = self.proc(
142
  images = raw,
143
  return_tensors = "pt"
 
148
 
149
  def _init_clip(self):
150
  self.proc = CLIPImageProcessor.from_pretrained(self.clip_ver)
151
+ self.size = self.proc.size.get("shortest_edge", 256)
152
  self.clip = CLIPVisionModelWithProjection.from_pretrained(
153
  self.clip_ver,
154
  device_map = self.device,