Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
from datasets import load_dataset | |
import gradio as gr | |
# Load the classifier pipeline for sentiment analysis (if needed) | |
classifier = pipeline("sentiment-analysis") | |
# Load model and tokenizer | |
model_name = "ckcl/mexc_price_model" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Use AutoModelForSequenceClassification or the appropriate model class | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Load dataset | |
ds = load_dataset("ckcl/BTC_USDT_dataset") | |
# Define the prediction function | |
def predict(input_text): | |
# Tokenize input | |
inputs = tokenizer(input_text, return_tensors="pt") | |
# Make predictions | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Extract prediction results | |
predictions = torch.argmax(outputs.logits, dim=-1) | |
return str(predictions.item()) | |
# Create Gradio interface | |
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="MEXC Contract Prediction", description="Predict contract prices for MEXC.") | |
# Launch the application | |
iface.launch() | |