File size: 8,223 Bytes
d572e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28d81d
d572e8e
 
 
 
 
 
 
 
 
 
90966f7
 
 
 
d572e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from datasets import load_dataset
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objects as go
import streamlit as st

from clarin_datasets.dataset_to_show import DatasetToShow
from clarin_datasets.utils import (
    count_num_of_characters,
    count_num_of_words,
)


class PolemoDataset(DatasetToShow):
    def __init__(self):
        DatasetToShow.__init__(self)
        self.dataset_name = "clarin-pl/polemo2-official"
        self.subsets = ["train", "validation", "test"]
        self.description = """The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, 
        hotels, products, and university. It is human-annotated on a level of full reviews and individual 
        sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and 
        sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197,
        046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is 
        annotated with four labels: positive, negative, neutral, or ambiguous. """

    def load_data(self):
        raw_dataset = load_dataset(self.dataset_name)
        self.data_dict = {
            subset: raw_dataset[subset].to_pandas() for subset in self.subsets
        }

    def show_dataset(self):
        header = st.container()
        description = st.container()
        dataframe_head = st.container()
        word_searching = st.container()
        dataset_statistics = st.container()

        with header:
            st.title(self.dataset_name)

        with description:
            st.header("Dataset description")
            st.write(self.description)

        with dataframe_head:
            filtering_options = self.data_dict["train"]["target"].unique().tolist()
            filtering_options.append("All classes")

            st.header("First 10 observations of a chosen class")
            class_to_show = st.selectbox(
                label="Select class to show", options=filtering_options
            )
            df_to_show = pd.concat(
                [
                    self.data_dict["train"].copy(),
                    self.data_dict["validation"].copy(),
                    self.data_dict["test"].copy(),
                ]
            )
            if class_to_show == "All classes":
                df_to_show = df_to_show.head(10)
            else:
                df_to_show = df_to_show.loc[df_to_show["target"] == class_to_show].head(
                    10
                )
            st.dataframe(df_to_show)
            st.text_area(label="Latex code", value=df_to_show.style.to_latex())

            st.subheader("First 10 observations of a chosen domain and text type")
            domain = st.selectbox(
                label="Select domain",
                options=["all", "hotels", "medicine", "products", "reviews"],
            )
            text_type = st.selectbox(
                label="Select text type",
                options=["Full text", "Tokenized to sentences"],
            )
            text_type_mapping_dict = {
                "Full text": "text",
                "Tokenized to sentences": "sentence",
            }

            polemo_subset = load_dataset(
                self.dataset_name,
                f"{domain}_{text_type_mapping_dict[text_type]}",
            )
            df = pd.concat(
                [
                    polemo_subset["train"].to_pandas(),
                    polemo_subset["validation"].to_pandas(),
                    polemo_subset["test"].to_pandas(),
                ]
            ).head(10)
            st.dataframe(df)
            st.text_area(label="Latex code", value=df.style.to_latex())

        with word_searching:
            st.header("Observations containing a chosen word")
            searched_word = st.text_input(
                label="Enter the word you are looking for below"
            )
            df_to_show = pd.concat(
                [
                    self.data_dict["train"].copy(),
                    self.data_dict["validation"].copy(),
                    self.data_dict["test"].copy(),
                ]
            )
            df_to_show = df_to_show.loc[df_to_show["text"].str.contains(searched_word)]
            st.dataframe(df_to_show)
            st.text_area(label="Latex code", value=df_to_show.style.to_latex())

        with dataset_statistics:
            st.header("Dataset statistics")
            st.subheader("Number of samples in each data split")
            metrics_df = pd.DataFrame.from_dict(
                {
                    "Train": self.data_dict["train"].shape[0],
                    "Validation": self.data_dict["validation"].shape[0],
                    "Test": self.data_dict["test"].shape[0],
                    "Total": sum(
                        [
                            self.data_dict["train"].shape[0],
                            self.data_dict["validation"].shape[0],
                            self.data_dict["test"].shape[0],
                        ]
                    ),
                },
                orient="index",
            ).reset_index()
            metrics_df.columns = ["Subset", "Number of samples"]
            st.dataframe(metrics_df)

            latex_df = metrics_df.style.to_latex()
            st.text_area(label="Latex code", value=latex_df)

            # Class distribution in each subset
            st.subheader("Class distribution in each subset")
            target_unique_values = self.data_dict["train"]["target"].unique()
            hist = (
                pd.DataFrame(
                    [
                        df["target"].value_counts(normalize=True).rename(k)
                        for k, df in self.data_dict.items()
                    ]
                )
                .reset_index()
                .rename({"index": "split_name"}, axis=1)
            )
            plot_data = [
                go.Bar(
                    name=str(target_unique_values[i]),
                    x=self.subsets,
                    y=hist[target_unique_values[i]].values,
                )
                for i in range(len(target_unique_values))
            ]
            barchart_class_dist = go.Figure(data=plot_data)
            barchart_class_dist.update_layout(
                barmode="group",
                title_text="Barchart - class distribution",
                xaxis_title="Split name",
                yaxis_title="Number of data points",
            )
            st.plotly_chart(barchart_class_dist, use_container_width=True)
            st.dataframe(hist)
            st.text_area(label="Latex code", value=hist.style.to_latex())

            # Number of words per observation
            st.subheader("Number of words per observation in each subset")
            hist_data_num_words = [
                df["text"].apply(count_num_of_words) for df in self.data_dict.values()
            ]
            fig_num_words = ff.create_distplot(
                hist_data_num_words, self.subsets, show_rug=False, bin_size=1
            )
            fig_num_words.update_traces(
                nbinsx=100, autobinx=True, selector={"type": "histogram"}
            )
            fig_num_words.update_layout(
                title_text="Histogram - number of characters per observation",
                xaxis_title="Number of characters",
            )
            st.plotly_chart(fig_num_words, use_container_width=True)

            # Number of characters per observation
            st.subheader("Number of characters per observation in each subset")
            hist_data_num_characters = [
                df["text"].apply(count_num_of_characters)
                for df in self.data_dict.values()
            ]
            fig_num_chars = ff.create_distplot(
                hist_data_num_characters, self.subsets, show_rug=False, bin_size=1
            )
            fig_num_chars.update_layout(
                title_text="Histogram - number of characters per observation",
                xaxis_title="Number of characters",
            )
            st.plotly_chart(fig_num_chars, use_container_width=True)