Spaces:
Runtime error
Runtime error
File size: 9,520 Bytes
77405f7 d572e8e 77405f7 d572e8e 77405f7 d572e8e c28d81d d572e8e 2b9022f d572e8e 90966f7 d572e8e 77405f7 d572e8e 77405f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datasets import load_dataset
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objects as go
from sklearn.manifold import TSNE
import streamlit as st
from clarin_datasets.dataset_to_show import DatasetToShow
from clarin_datasets.utils import (
count_num_of_characters,
count_num_of_words,
embed_sentence,
PLOT_COLOR_PALETTE
)
class PolemoDataset(DatasetToShow):
def __init__(self):
DatasetToShow.__init__(self)
self.dataset_name = "clarin-pl/polemo2-official"
self.subsets = ["train", "validation", "test"]
self.description = f"""
Dataset link: https://huggingface.co/datasets/{self.dataset_name}
The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine,
hotels, products, and university. It is human-annotated on a level of full reviews and individual
sentences. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and
sentence was manually annotated with sentiment in the 2+1 scheme, which gives a total of 197,
046 annotations. About 85% of the reviews are from the medicine and hotel domains. Each review is
annotated with four labels: positive, negative, neutral, or ambiguous. """
def load_data(self):
raw_dataset = load_dataset(self.dataset_name)
self.data_dict = {
subset: raw_dataset[subset].to_pandas() for subset in self.subsets
}
def show_dataset(self):
header = st.container()
description = st.container()
dataframe_head = st.container()
word_searching = st.container()
dataset_statistics = st.container()
tsne_projection = st.container()
with header:
st.title(self.dataset_name)
with description:
st.header("Dataset description")
st.write(self.description)
with dataframe_head:
filtering_options = self.data_dict["train"]["target"].unique().tolist()
filtering_options.append("All classes")
st.header("First 10 observations of a chosen class")
class_to_show = st.selectbox(
label="Select class to show", options=filtering_options
)
df_to_show = pd.concat(
[
self.data_dict["train"].copy(),
self.data_dict["validation"].copy(),
self.data_dict["test"].copy(),
]
)
if class_to_show == "All classes":
df_to_show = df_to_show.head(10)
else:
df_to_show = df_to_show.loc[df_to_show["target"] == class_to_show].head(
10
)
st.dataframe(df_to_show)
st.text_area(label="Latex code", value=df_to_show.style.to_latex())
st.subheader("First 10 observations of a chosen domain and text type")
domain = st.selectbox(
label="Select domain",
options=["all", "hotels", "medicine", "products", "reviews"],
)
text_type = st.selectbox(
label="Select text type",
options=["Full text", "Tokenized to sentences"],
)
text_type_mapping_dict = {
"Full text": "text",
"Tokenized to sentences": "sentence",
}
polemo_subset = load_dataset(
self.dataset_name,
f"{domain}_{text_type_mapping_dict[text_type]}",
)
df = pd.concat(
[
polemo_subset["train"].to_pandas(),
polemo_subset["validation"].to_pandas(),
polemo_subset["test"].to_pandas(),
]
).head(10)
st.dataframe(df)
st.text_area(label="Latex code", value=df.style.to_latex())
with word_searching:
st.header("Observations containing a chosen word")
searched_word = st.text_input(
label="Enter the word you are looking for below"
)
df_to_show = pd.concat(
[
self.data_dict["train"].copy(),
self.data_dict["validation"].copy(),
self.data_dict["test"].copy(),
]
)
df_to_show = df_to_show.loc[df_to_show["text"].str.contains(searched_word)]
st.dataframe(df_to_show)
st.text_area(label="Latex code", value=df_to_show.style.to_latex())
with dataset_statistics:
st.header("Dataset statistics")
st.subheader("Number of samples in each data split")
metrics_df = pd.DataFrame.from_dict(
{
"Train": self.data_dict["train"].shape[0],
"Validation": self.data_dict["validation"].shape[0],
"Test": self.data_dict["test"].shape[0],
"Total": sum(
[
self.data_dict["train"].shape[0],
self.data_dict["validation"].shape[0],
self.data_dict["test"].shape[0],
]
),
},
orient="index",
).reset_index()
metrics_df.columns = ["Subset", "Number of samples"]
st.dataframe(metrics_df)
latex_df = metrics_df.style.to_latex()
st.text_area(label="Latex code", value=latex_df)
# Class distribution in each subset
st.subheader("Class distribution in each subset")
target_unique_values = self.data_dict["train"]["target"].unique()
hist = (
pd.DataFrame(
[
df["target"].value_counts(normalize=True).rename(k)
for k, df in self.data_dict.items()
]
)
.reset_index()
.rename({"index": "split_name"}, axis=1)
)
plot_data = [
go.Bar(
name=str(target_unique_values[i]),
x=self.subsets,
y=hist[target_unique_values[i]].values,
)
for i in range(len(target_unique_values))
]
barchart_class_dist = go.Figure(data=plot_data)
barchart_class_dist.update_layout(
barmode="group",
title_text="Barchart - class distribution",
xaxis_title="Split name",
yaxis_title="Number of data points",
)
st.plotly_chart(barchart_class_dist, use_container_width=True)
st.dataframe(hist)
st.text_area(label="Latex code", value=hist.style.to_latex())
# Number of words per observation
st.subheader("Number of words per observation in each subset")
hist_data_num_words = [
df["text"].apply(count_num_of_words) for df in self.data_dict.values()
]
fig_num_words = ff.create_distplot(
hist_data_num_words, self.subsets, show_rug=False, bin_size=1
)
fig_num_words.update_traces(
nbinsx=100, autobinx=True, selector={"type": "histogram"}
)
fig_num_words.update_layout(
title_text="Histogram - number of characters per observation",
xaxis_title="Number of characters",
)
st.plotly_chart(fig_num_words, use_container_width=True)
# Number of characters per observation
st.subheader("Number of characters per observation in each subset")
hist_data_num_characters = [
df["text"].apply(count_num_of_characters)
for df in self.data_dict.values()
]
fig_num_chars = ff.create_distplot(
hist_data_num_characters, self.subsets, show_rug=False, bin_size=1
)
fig_num_chars.update_layout(
title_text="Histogram - number of characters per observation",
xaxis_title="Number of characters",
)
st.plotly_chart(fig_num_chars, use_container_width=True)
with tsne_projection:
st.header("t-SNE projection of the dataset")
subset_to_project = st.selectbox(
label="Select subset to project", options=self.subsets
)
sentences = self.data_dict[subset_to_project]["text"].values
reducer = TSNE(
n_components=2
)
embedded_sentences = np.array(
[embed_sentence(text) for text in sentences]
)
transformed_embeddings = reducer.fit_transform(embedded_sentences)
fig, ax = plt.subplots()
ax.scatter(
x=transformed_embeddings[:, 0],
y=transformed_embeddings[:, 1],
c=[
PLOT_COLOR_PALETTE[x]
for x in self.data_dict[subset_to_project]["target"].values
],
)
st.pyplot(fig)
|