Spaces:
Runtime error
Runtime error
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import seaborn as sns | |
from datasets import load_dataset | |
from sklearn.manifold import TSNE | |
import streamlit as st | |
from clarin_datasets.dataset_to_show import DatasetToShow | |
from clarin_datasets.utils import embed_sentence, PLOT_COLOR_PALETTE | |
class AspectEmoDataset(DatasetToShow): | |
def __init__(self): | |
DatasetToShow.__init__(self) | |
self.dataset_name = "clarin-pl/aspectemo" | |
self.description = [ | |
f""" | |
Dataset link: https://huggingface.co/datasets/{self.dataset_name} | |
AspectEmo Corpus is an extended version of a publicly available PolEmo 2.0 | |
corpus of Polish customer reviews used in many projects on the use of different methods in sentiment | |
analysis. The AspectEmo corpus consists of four subcorpora, each containing online customer reviews from the | |
following domains: school, medicine, hotels, and products. All documents are annotated at the aspect level | |
with six sentiment categories: strong negative (minus_m), weak negative (minus_s), neutral (zero), | |
weak positive (plus_s), strong positive (plus_m). | |
""", | |
"Tasks (input, output and metrics)", | |
""" | |
Aspect-based sentiment analysis (ABSA) is a text analysis method that | |
categorizes data by aspects and identifies the sentiment assigned to each aspect. It is the sequence tagging | |
task. | |
"Input ('tokens' column): sequence of tokens" | |
Output ('labels' column): sequence of predicted tokens’ classes ("O" + 6 possible classes: strong negative ( | |
a_minus_m), weak negative (a_minus_s), neutral (a_zero), weak positive (a_plus_s), strong positive ( | |
a_plus_m), ambiguous (a_amb) ) | |
Domain: school, medicine, hotels and products | |
Measurements: | |
Example: ['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić', | |
'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.'] → ['O', 'a_plus_s', 'O', | |
'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O'] | |
""", | |
] | |
def load_data(self): | |
raw_dataset = load_dataset(self.dataset_name) | |
self.data_dict = { | |
subset: raw_dataset[subset].to_pandas() for subset in self.subsets | |
} | |
def show_dataset(self): | |
header = st.container() | |
description = st.container() | |
dataframe_head = st.container() | |
class_distribution = st.container() | |
most_common_tokens = st.container() | |
tsne_projection = st.container() | |
with header: | |
st.title(self.dataset_name) | |
with description: | |
st.header("Dataset description") | |
st.write(self.description[0]) | |
st.subheader(self.description[1]) | |
st.write(self.description[2]) | |
full_dataframe = pd.concat(self.data_dict.values(), axis="rows") | |
tokens_all = full_dataframe["tokens"].tolist() | |
tokens_all = [x for subarray in tokens_all for x in subarray] | |
labels_all = full_dataframe["labels"].tolist() | |
labels_all = [x for subarray in labels_all for x in subarray] | |
with dataframe_head: | |
st.header("First 10 observations of the chosen subset") | |
selected_subset = st.selectbox( | |
label="Select subset to see", options=self.subsets | |
) | |
df_to_show = self.data_dict[selected_subset].head(10) | |
st.dataframe(df_to_show) | |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex()) | |
class_distribution_dict = {} | |
for subset in self.subsets: | |
all_labels_from_subset = self.data_dict[subset]["labels"].tolist() | |
all_labels_from_subset = [ | |
x for subarray in all_labels_from_subset for x in subarray if x != 0 | |
] | |
all_labels_from_subset = pd.Series(all_labels_from_subset) | |
class_distribution_dict[subset] = ( | |
all_labels_from_subset.value_counts(normalize=True) | |
.sort_index() | |
.reset_index() | |
.rename({"index": "class", 0: subset}, axis="columns") | |
) | |
class_distribution_df = pd.merge( | |
class_distribution_dict["train"], | |
class_distribution_dict["test"], | |
on="class", | |
) | |
with class_distribution: | |
st.header("Class distribution in each subset (without '0')") | |
st.dataframe(class_distribution_df) | |
st.text_area( | |
label="LaTeX code", value=class_distribution_df.style.to_latex() | |
) | |
# Most common tokens from selected class (without 0) | |
full_df_unzipped = pd.DataFrame( | |
{ | |
"token": tokens_all, | |
"label": labels_all, | |
} | |
) | |
full_df_unzipped = full_df_unzipped.loc[full_df_unzipped["label"] != 0] | |
possible_options = sorted(full_df_unzipped["label"].unique()) | |
with most_common_tokens: | |
st.header("10 most common tokens from selected class (without '0')") | |
selected_class = st.selectbox( | |
label="Select class to show", options=possible_options | |
) | |
df_to_show = ( | |
full_df_unzipped.loc[full_df_unzipped["label"] == selected_class] | |
.groupby(["token"]) | |
.count() | |
.reset_index() | |
.rename({"label": "no_of_occurrences"}, axis=1) | |
.sort_values(by="no_of_occurrences", ascending=False) | |
.reset_index(drop=True) | |
.head(10) | |
) | |
st.dataframe(df_to_show) | |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex()) | |
with tsne_projection: | |
st.header("t-SNE projection of the dataset") | |
subset_to_project = st.selectbox( | |
label="Select subset to project", options=self.subsets | |
) | |
tokens_unzipped = self.data_dict[subset_to_project]["tokens"].tolist() | |
tokens_unzipped = np.array([x for subarray in tokens_unzipped for x in subarray]) | |
labels_unzipped = self.data_dict[subset_to_project]["labels"].tolist() | |
labels_unzipped = np.array([x for subarray in labels_unzipped for x in subarray]) | |
df_unzipped = pd.DataFrame( | |
{ | |
"tokens": tokens_unzipped, | |
"labels": labels_unzipped, | |
} | |
) | |
df_unzipped = df_unzipped.loc[df_unzipped["labels"] != 0] | |
tokens_unzipped = df_unzipped["tokens"].values | |
labels_unzipped = df_unzipped["labels"].values | |
embedded_tokens = np.array( | |
[embed_sentence(x) for x in tokens_unzipped] | |
) | |
reducer = TSNE( | |
n_components=2 | |
) | |
transformed_embeddings = reducer.fit_transform(embedded_tokens) | |
fig, ax = plt.subplots() | |
ax.scatter( | |
x=transformed_embeddings[:, 0], | |
y=transformed_embeddings[:, 1], | |
c=[ | |
PLOT_COLOR_PALETTE[x] | |
for x in labels_unzipped | |
], | |
) | |
st.pyplot(fig) | |