Spaces:
Runtime error
Runtime error
Mariusz Kossakowski
commited on
Commit
•
abb1c69
1
Parent(s):
997a159
Black formatting
Browse files
clarin_datasets/aspectemo_dataset.py
CHANGED
@@ -37,7 +37,7 @@ class AspectEmoDataset(DatasetToShow):
|
|
37 |
Example: ['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić',
|
38 |
'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.'] → ['O', 'a_plus_s', 'O',
|
39 |
'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O']
|
40 |
-
"""
|
41 |
]
|
42 |
|
43 |
def load_data(self):
|
@@ -70,7 +70,9 @@ class AspectEmoDataset(DatasetToShow):
|
|
70 |
|
71 |
with dataframe_head:
|
72 |
st.header("First 10 observations of the chosen subset")
|
73 |
-
selected_subset = st.selectbox(
|
|
|
|
|
74 |
df_to_show = self.data_dict[selected_subset].head(10)
|
75 |
st.dataframe(df_to_show)
|
76 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
@@ -84,9 +86,9 @@ class AspectEmoDataset(DatasetToShow):
|
|
84 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
85 |
class_distribution_dict[subset] = (
|
86 |
all_labels_from_subset.value_counts(normalize=True)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
)
|
91 |
|
92 |
class_distribution_df = pd.merge(
|
|
|
37 |
Example: ['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić',
|
38 |
'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.'] → ['O', 'a_plus_s', 'O',
|
39 |
'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O']
|
40 |
+
""",
|
41 |
]
|
42 |
|
43 |
def load_data(self):
|
|
|
70 |
|
71 |
with dataframe_head:
|
72 |
st.header("First 10 observations of the chosen subset")
|
73 |
+
selected_subset = st.selectbox(
|
74 |
+
label="Select subset to see", options=self.subsets
|
75 |
+
)
|
76 |
df_to_show = self.data_dict[selected_subset].head(10)
|
77 |
st.dataframe(df_to_show)
|
78 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
|
|
86 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
87 |
class_distribution_dict[subset] = (
|
88 |
all_labels_from_subset.value_counts(normalize=True)
|
89 |
+
.sort_index()
|
90 |
+
.reset_index()
|
91 |
+
.rename({"index": "class", 0: subset}, axis="columns")
|
92 |
)
|
93 |
|
94 |
class_distribution_df = pd.merge(
|
clarin_datasets/kpwr_ner_datasets.py
CHANGED
@@ -33,7 +33,7 @@ class KpwrNerDataset(DatasetToShow):
|
|
33 |
‘dużo’, ‘młodsze’, ‘,’, ‘powstało’, ‘w’, ‘Niemczech’, ‘.’] → [‘B-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
|
34 |
‘O’, ‘B-nam_loc_gpe_country’, ‘O’, ‘B-nam_pro_title’, ‘I-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
|
35 |
‘B-nam_loc_gpe_country’, ‘O’]
|
36 |
-
"""
|
37 |
]
|
38 |
|
39 |
def load_data(self):
|
@@ -84,7 +84,9 @@ class KpwrNerDataset(DatasetToShow):
|
|
84 |
|
85 |
with dataframe_head:
|
86 |
st.header("First 10 observations of the chosen subset")
|
87 |
-
selected_subset = st.selectbox(
|
|
|
|
|
88 |
df_to_show = self.data_dict[selected_subset].head(10)
|
89 |
st.dataframe(df_to_show)
|
90 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
@@ -128,10 +130,12 @@ class KpwrNerDataset(DatasetToShow):
|
|
128 |
full_df_unzipped = full_df_unzipped.loc[
|
129 |
(full_df_unzipped["ner"] != "O")
|
130 |
& ~(full_df_unzipped["ner"].str.startswith("I-"))
|
131 |
-
|
132 |
possible_options = sorted(full_df_unzipped["ner"].unique())
|
133 |
with most_common_tokens:
|
134 |
-
st.header(
|
|
|
|
|
135 |
selected_class = st.selectbox(
|
136 |
label="Select class to show", options=possible_options
|
137 |
)
|
|
|
33 |
‘dużo’, ‘młodsze’, ‘,’, ‘powstało’, ‘w’, ‘Niemczech’, ‘.’] → [‘B-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
|
34 |
‘O’, ‘B-nam_loc_gpe_country’, ‘O’, ‘B-nam_pro_title’, ‘I-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
|
35 |
‘B-nam_loc_gpe_country’, ‘O’]
|
36 |
+
""",
|
37 |
]
|
38 |
|
39 |
def load_data(self):
|
|
|
84 |
|
85 |
with dataframe_head:
|
86 |
st.header("First 10 observations of the chosen subset")
|
87 |
+
selected_subset = st.selectbox(
|
88 |
+
label="Select subset to see", options=self.subsets
|
89 |
+
)
|
90 |
df_to_show = self.data_dict[selected_subset].head(10)
|
91 |
st.dataframe(df_to_show)
|
92 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
|
|
130 |
full_df_unzipped = full_df_unzipped.loc[
|
131 |
(full_df_unzipped["ner"] != "O")
|
132 |
& ~(full_df_unzipped["ner"].str.startswith("I-"))
|
133 |
+
]
|
134 |
possible_options = sorted(full_df_unzipped["ner"].unique())
|
135 |
with most_common_tokens:
|
136 |
+
st.header(
|
137 |
+
"10 most common tokens from selected class (without 'O' and 'I-*')"
|
138 |
+
)
|
139 |
selected_class = st.selectbox(
|
140 |
label="Select class to show", options=possible_options
|
141 |
)
|
clarin_datasets/nkjp_pos_dataset.py
CHANGED
@@ -33,7 +33,7 @@ class NkjpPosDataset(DatasetToShow):
|
|
33 |
Input (translated by DeepL): Register as unemployed.
|
34 |
|
35 |
Output: ['impt', 'qub', 'conj', 'subst', 'interp']
|
36 |
-
"""
|
37 |
]
|
38 |
|
39 |
def load_data(self):
|
@@ -75,8 +75,12 @@ class NkjpPosDataset(DatasetToShow):
|
|
75 |
|
76 |
with dataframe_head:
|
77 |
st.header("First 10 observations of the chosen subset")
|
78 |
-
subset_to_show = st.selectbox(
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
st.dataframe(df_to_show)
|
81 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
82 |
|
@@ -84,16 +88,14 @@ class NkjpPosDataset(DatasetToShow):
|
|
84 |
for subset in self.subsets:
|
85 |
all_labels_from_subset = self.data_dict_named[subset]["tags"].tolist()
|
86 |
all_labels_from_subset = [
|
87 |
-
x
|
88 |
-
for subarray in all_labels_from_subset
|
89 |
-
for x in subarray
|
90 |
]
|
91 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
92 |
class_distribution_dict[subset] = (
|
93 |
all_labels_from_subset.value_counts(normalize=True)
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
)
|
98 |
|
99 |
class_distribution_df = pd.merge(
|
|
|
33 |
Input (translated by DeepL): Register as unemployed.
|
34 |
|
35 |
Output: ['impt', 'qub', 'conj', 'subst', 'interp']
|
36 |
+
""",
|
37 |
]
|
38 |
|
39 |
def load_data(self):
|
|
|
75 |
|
76 |
with dataframe_head:
|
77 |
st.header("First 10 observations of the chosen subset")
|
78 |
+
subset_to_show = st.selectbox(
|
79 |
+
label="Select subset to see", options=self.subsets
|
80 |
+
)
|
81 |
+
df_to_show = (
|
82 |
+
self.data_dict[subset_to_show].head(10).drop("id", axis="columns")
|
83 |
+
)
|
84 |
st.dataframe(df_to_show)
|
85 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
86 |
|
|
|
88 |
for subset in self.subsets:
|
89 |
all_labels_from_subset = self.data_dict_named[subset]["tags"].tolist()
|
90 |
all_labels_from_subset = [
|
91 |
+
x for subarray in all_labels_from_subset for x in subarray
|
|
|
|
|
92 |
]
|
93 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
94 |
class_distribution_dict[subset] = (
|
95 |
all_labels_from_subset.value_counts(normalize=True)
|
96 |
+
.sort_index()
|
97 |
+
.reset_index()
|
98 |
+
.rename({"index": "class", 0: subset}, axis="columns")
|
99 |
)
|
100 |
|
101 |
class_distribution_df = pd.merge(
|
clarin_datasets/punctuation_restoration_dataset.py
CHANGED
@@ -36,7 +36,7 @@ class PunctuationRestorationDataset(DatasetToShow):
|
|
36 |
""",
|
37 |
"Task description",
|
38 |
"The purpose of this task is to restore punctuation in the ASR recognition of texts read out loud.",
|
39 |
-
"clarin_datasets/punctuation_restoration_task.png"
|
40 |
]
|
41 |
|
42 |
def load_data(self):
|
@@ -81,7 +81,9 @@ class PunctuationRestorationDataset(DatasetToShow):
|
|
81 |
|
82 |
with dataframe_head:
|
83 |
st.header("First 10 observations of the chosen subset")
|
84 |
-
subset_to_show = st.selectbox(
|
|
|
|
|
85 |
df_to_show = self.data_dict[subset_to_show].head(10)
|
86 |
st.dataframe(df_to_show)
|
87 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
@@ -90,10 +92,7 @@ class PunctuationRestorationDataset(DatasetToShow):
|
|
90 |
for subset in self.subsets:
|
91 |
all_labels_from_subset = self.data_dict_named[subset]["tags"].tolist()
|
92 |
all_labels_from_subset = [
|
93 |
-
x
|
94 |
-
for subarray in all_labels_from_subset
|
95 |
-
for x in subarray
|
96 |
-
if x != "O"
|
97 |
]
|
98 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
99 |
class_distribution_dict[subset] = (
|
|
|
36 |
""",
|
37 |
"Task description",
|
38 |
"The purpose of this task is to restore punctuation in the ASR recognition of texts read out loud.",
|
39 |
+
"clarin_datasets/punctuation_restoration_task.png",
|
40 |
]
|
41 |
|
42 |
def load_data(self):
|
|
|
81 |
|
82 |
with dataframe_head:
|
83 |
st.header("First 10 observations of the chosen subset")
|
84 |
+
subset_to_show = st.selectbox(
|
85 |
+
label="Select subset to see", options=self.subsets
|
86 |
+
)
|
87 |
df_to_show = self.data_dict[subset_to_show].head(10)
|
88 |
st.dataframe(df_to_show)
|
89 |
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
|
|
|
92 |
for subset in self.subsets:
|
93 |
all_labels_from_subset = self.data_dict_named[subset]["tags"].tolist()
|
94 |
all_labels_from_subset = [
|
95 |
+
x for subarray in all_labels_from_subset for x in subarray if x != "O"
|
|
|
|
|
|
|
96 |
]
|
97 |
all_labels_from_subset = pd.Series(all_labels_from_subset)
|
98 |
class_distribution_dict[subset] = (
|