Mariusz Kossakowski commited on
Commit
afc4898
·
1 Parent(s): 934878d

Add app first version

Browse files
Files changed (8) hide show
  1. LICENSE +21 -0
  2. README.md +1 -12
  3. app.py +161 -0
  4. data/dev.csv +0 -0
  5. data/test.csv +0 -0
  6. data/train.csv +0 -0
  7. poetry.lock +0 -0
  8. pyproject.toml +23 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 CLARIN-PL
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,12 +1 @@
1
- ---
2
- title: Abusive Clauses Dashboard
3
- emoji: 🦀
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: streamlit
7
- sdk_version: 1.10.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # abusive-clauses-dashboard
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pandas as pd
4
+ import plotly.figure_factory as ff
5
+ import plotly.graph_objects as go
6
+ import pyperclip
7
+ import streamlit as st
8
+ from unidecode import unidecode
9
+
10
+ st.set_page_config(layout="wide")
11
+
12
+ DATA_SPLITS = ["train", "dev", "test"]
13
+
14
+
15
+ def load_data() -> dict[str, pd.DataFrame]:
16
+ return {data: pd.read_csv(f"data/{data}.csv") for data in DATA_SPLITS}
17
+
18
+
19
+ def flatten_list(main_list: list[list]) -> list:
20
+ return [item for sublist in main_list for item in sublist]
21
+
22
+
23
+ def count_num_of_characters(text: str) -> int:
24
+ return len(re.sub(r"[^a-zA-Z]", "", unidecode(text)))
25
+
26
+
27
+ def count_num_of_words(text: str) -> int:
28
+ return len(re.sub(r"[^a-zA-Z ]", "", unidecode(text)).split(" "))
29
+
30
+
31
+ DATA_DICT = load_data()
32
+
33
+ header = st.container()
34
+ description = st.container()
35
+ dataset_statistics = st.container()
36
+ class_distribution = st.container()
37
+
38
+ with header:
39
+ st.title("PAC - Polish Abusive Clauses Dataset")
40
+
41
+ with description:
42
+ st.header("Dataset description")
43
+ desc = """
44
+ ''I have read and agree to the terms and conditions'' is one of the biggest lies on the Internet.
45
+ Consumers rarely read the contracts they are required to accept. We conclude agreements over the Internet daily.
46
+ But do we know the content of these agreements? Do we check potential unfair statements? On the Internet,
47
+ we probably skip most of the Terms and Conditions. However, we must remember that we have concluded many more
48
+ contracts. Imagine that we want to buy a house, a car, send our kids to the nursery, open a bank account,
49
+ or many more. In all these situations, you will need to conclude the contract, but there is a high probability
50
+ that you will not read the entire agreement with proper understanding. European consumer law aims to prevent
51
+ businesses from using so-called ''unfair contractual terms'' in their unilaterally drafted contracts,
52
+ requiring consumers to accept.
53
+
54
+ Our dataset treats ''unfair contractual term'' as the equivalent of an abusive clause. It could be defined as a
55
+ clause that is unilaterally imposed by one of the contract's parties, unequally affecting the other, or creating a
56
+ situation of imbalance between the duties and rights of the parties.
57
+
58
+ On the EU and at the national such as the Polish levels, agencies cannot check possible agreements by hand. Hence,
59
+ we took the first step to evaluate the possibility of accelerating this process. We created a dataset and machine
60
+ learning models to automate potentially abusive clauses detection partially. Consumer protection organizations and
61
+ agencies can use these resources to make their work more effective and efficient. Moreover, consumers can automatically
62
+ analyze contracts and understand what they agree upon.
63
+ """
64
+ st.write(desc)
65
+ st.markdown("<h1 style='text-align: center; color: white;'>Dataset statistics</h1>",
66
+ unsafe_allow_html=True)
67
+
68
+ with dataset_statistics:
69
+ st.header("Number of samples in each data split")
70
+ metrics_df = pd.DataFrame.from_dict(
71
+ {
72
+ "Train": DATA_DICT["train"].shape[0],
73
+ "Dev": DATA_DICT["dev"].shape[0],
74
+ "Test": DATA_DICT["test"].shape[0],
75
+ "Total": sum(
76
+ [
77
+ DATA_DICT["train"].shape[0],
78
+ DATA_DICT["dev"].shape[0],
79
+ DATA_DICT["test"].shape[0],
80
+ ]
81
+ ),
82
+ },
83
+ orient="index",
84
+ ).reset_index()
85
+ metrics_df.columns = ["Subset", "Number of samples"]
86
+ st.dataframe(metrics_df)
87
+ latex_df = metrics_df.style.to_latex()
88
+ st.button(label="Copy table to LaTeX", on_click=lambda: pyperclip.copy(latex_df), key="copy_metrics_df")
89
+
90
+ # Class distribution in each subset
91
+ with class_distribution:
92
+ st.header("Class distribution in each subset")
93
+ plot_column, table_column = st.columns(2)
94
+ with plot_column:
95
+ hist = (
96
+ pd.DataFrame(
97
+ [
98
+ df["label"].value_counts(normalize=True).rename(k)
99
+ for k, df in DATA_DICT.items()
100
+ ]
101
+ )
102
+ .reset_index()
103
+ .rename({"index": "split_name"}, axis=1)
104
+ )
105
+ barchart_class_dist = go.Figure(
106
+ data=[
107
+ go.Bar(
108
+ name="BEZPIECZNE_POSTANOWIENIE_UMOWNE",
109
+ x=DATA_SPLITS,
110
+ y=hist["BEZPIECZNE_POSTANOWIENIE_UMOWNE"].values,
111
+ ),
112
+ go.Bar(
113
+ name="KLAUZULA_ABUZYWNA",
114
+ x=DATA_SPLITS,
115
+ y=hist["KLAUZULA_ABUZYWNA"].values,
116
+ ),
117
+ ]
118
+ )
119
+ barchart_class_dist.update_layout(
120
+ barmode="group",
121
+ xaxis_title="Split name",
122
+ yaxis_title="Number of data points",
123
+ )
124
+ st.plotly_chart(barchart_class_dist, use_container_width=True)
125
+
126
+ with table_column:
127
+ for _ in range(10):
128
+ st.text("")
129
+ st.dataframe(hist)
130
+ latex_df_class_dist = hist.style.to_latex()
131
+ st.button(label="Copy table to LaTeX", on_click=lambda: pyperclip.copy(latex_df_class_dist),
132
+ key="copy_class_dist_df")
133
+
134
+ # Number of words per observation
135
+ hist_data_num_words = [
136
+ df["text"].apply(count_num_of_words) for df in DATA_DICT.values()
137
+ ]
138
+ fig_num_words = ff.create_distplot(
139
+ hist_data_num_words, DATA_SPLITS, show_rug=False, bin_size=1
140
+ )
141
+ fig_num_words.update_traces(
142
+ nbinsx=100, autobinx=True, selector={"type": "histogram"}
143
+ )
144
+ fig_num_words.update_layout(
145
+ title_text="Histogram - number of characters per observation",
146
+ xaxis_title="Number of characters",
147
+ )
148
+ st.plotly_chart(fig_num_words, use_container_width=True)
149
+
150
+ # Number of characters per observation
151
+ hist_data_num_characters = [
152
+ df["text"].apply(count_num_of_characters) for df in DATA_DICT.values()
153
+ ]
154
+ fig_num_chars = ff.create_distplot(
155
+ hist_data_num_characters, DATA_SPLITS, show_rug=False, bin_size=1
156
+ )
157
+ fig_num_chars.update_layout(
158
+ title_text="Histogram - number of characters per observation",
159
+ xaxis_title="Number of characters",
160
+ )
161
+ st.plotly_chart(fig_num_chars, use_container_width=True)
data/dev.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "abusive-clauses-dashboard"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = ["Your Name <you@example.com>"]
6
+
7
+ [tool.poetry.dependencies]
8
+ python = ">=3.10,<3.11"
9
+ streamlit = "^1.11.0"
10
+ gradio = "^3.0.26"
11
+ transformers = "^4.20.1"
12
+ datasets = "^2.3.2"
13
+ black = "^22.6.0"
14
+ pyperclip = "^1.8.2"
15
+ plotly = "^5.9.0"
16
+ Unidecode = "^1.3.4"
17
+ scipy = "^1.8.1"
18
+
19
+ [tool.poetry.dev-dependencies]
20
+
21
+ [build-system]
22
+ requires = ["poetry-core>=1.0.0"]
23
+ build-backend = "poetry.core.masonry.api"